Answer to Question #205288 in Mechanics | Relativity for Safi Ullah

Question #205288

A point moves with constant speed t in a direction which forms an angle with the x-axis of the frame of reference S'. Frame S' moves with a velocity V = Và relative to another frame of reference Ss. What is the angle 0 formed by the direction of motion of the point with the x-axis of S? What is the relationship between the two angles as v - c? f sin sin d Ans.: tan 0 = tan e


1
Expert's answer
2021-06-11T11:35:16-0400

Solution:-



Wave from equation

ψ=Aei2πυ(trc)\psi=Ae^{{i2\pi\upsilon }{(t-\frac{r}{c})}} =Aei2πυ(t(xcosθ+ysinθ)c)Ae^{i2\pi\upsilon(t-\frac{(xcos\theta+ysin\theta)}{c})}

Similarly S' co-ordinate system

ψ=Aei2πυ(trc)\psi'=A'e^{{i2\pi\upsilon '}{(t'-\frac{r'}{c})}} =Aei2πυ(t(xcosθ+ysinθ)c)A'e^{i2\pi\upsilon '(t'-\frac{(x'cos\theta'+y'sin\theta')}{c})}

Number of frames does not depend motion of frame

υ(trc)=υ(trc)\upsilon (t-\frac{r}{c})=\upsilon'(t'-\frac{r'}{c})


υ(txcosθ+ysinθc)=υ(txcosθ+ysinθc)\upsilon(t-\frac{xcos\theta+ysin\theta}{c})=\upsilon'(t'-\frac{x'cos\theta'+y'sin\theta'}{c})

x,y,t value put


υ(γ(t+βxc)γ(x+βct)cosθ+ysinθc)=υ(txcosθ+ysinθc)\upsilon(\gamma(t'+\frac{\beta x'}{c})-\frac{\gamma (x'+\beta ct')cos\theta +y'sin\theta}{c})=\upsilon'(t'-\frac{x'cos\theta'+y'sin\theta'}{c})

Comparison x' components

γv(cosθβ)=υcosθ\gamma v(cos\theta-\beta)=\upsilon'cos\theta'

Comperision of y' cofficient

vsinθ=vsinθvsin\theta=v'sin\theta'

Comperision of t' components

γv(1βcosθ)=υ\gamma v(1-\beta cos\theta)=\upsilon'

υ=υγ(1βcosθ)\upsilon =\frac{\upsilon'}{\gamma(1-\beta cos\theta)}

equation (1)and(2)

tanθ=sinθγ(cosθβ)tan\theta'=\frac{sin\theta}{\gamma(cos\theta-\beta)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment