A point moves with constant speed t in a direction which forms an angle with the x-axis of the frame of reference S'. Frame S' moves with a velocity V = Và relative to another frame of reference Ss. What is the angle 0 formed by the direction of motion of the point with the x-axis of S? What is the relationship between the two angles as v - c? f sin sin d Ans.: tan 0 = tan e
Solution:-
Wave from equation
"\\psi=Ae^{{i2\\pi\\upsilon }{(t-\\frac{r}{c})}}" ="Ae^{i2\\pi\\upsilon(t-\\frac{(xcos\\theta+ysin\\theta)}{c})}"
Similarly S' co-ordinate system
"\\psi'=A'e^{{i2\\pi\\upsilon '}{(t'-\\frac{r'}{c})}}" ="A'e^{i2\\pi\\upsilon '(t'-\\frac{(x'cos\\theta'+y'sin\\theta')}{c})}"
Number of frames does not depend motion of frame
"\\upsilon (t-\\frac{r}{c})=\\upsilon'(t'-\\frac{r'}{c})"
x,y,t value put
Comparison x' components
"\\gamma v(cos\\theta-\\beta)=\\upsilon'cos\\theta'"
Comperision of y' cofficient
"vsin\\theta=v'sin\\theta'"
Comperision of t' components
"\\gamma v(1-\\beta cos\\theta)=\\upsilon'"
"\\upsilon =\\frac{\\upsilon'}{\\gamma(1-\\beta cos\\theta)}"
equation (1)and(2)
"tan\\theta'=\\frac{sin\\theta}{\\gamma(cos\\theta-\\beta)}"
Comments
Leave a comment