Gives
"R_1=R_2=80 \\Omega"
Current "(i)=0.15A"
Total resistance
Series combination
"R_{net}=R_1+R_2"
"R_{net}=80+80=160\\Omega"
Voltage drop across the resistance
"V_1=iR_1"
"V_2=iR_2"
"V_1=V_2=0.15\\times80=12V"
Net current through the circuit
"I=\\frac{V}{R_{net}}"
"I=\\frac{24}{160}=0.15A"
Part (2)
Resistance of parrelled combination
"R_1=30\\Omega"
"R_2=50\\Omega"
Voltage drop across R1 resistance
V1=4.5V
Net resistance
"\\frac{1}{R}=\\frac{1}{R_1}+\\frac{1}{R_2}"
"R=\\frac{R_1R_2}{R_1+R_2}"
"R=\\frac{30\\times50}{30+50}=18.75\\Omega"
Rnet=18.75 ohm
Current uper resistance
"V=i_1R_1"
"i_1=\\frac{V}{R_1}"
"i_1=\\frac{4.5}{30}=0.15A"
Current flow R2 resistance
"i_2=\\frac{V}{R_2}"
"i_2=\\frac{4.5}{50}=0.09A"
Battery voltage (v)= 4.5V
Parrelled combination voltage drop same each resistance
Current through the circuit
"I=i_1+i_2"
"I=0.15+0.09=0.24A"
"I=0.24A"
Comments
Leave a comment