Question #196359

At time t = 0, the displacement x(0) of the block in a linear oscillator like that of Fig. 3

is -8.50 cm. The block’s velocity v(0) then is -0.93 m/s, and its acceleration a(0) is 45.0

m/s2 . Determine,

(i) the angular frequency of this system,

(ii) phase constant and

(iii) amplitude of this system. [3,5,3]


1
Expert's answer
2021-05-21T10:42:35-0400

Solution.

t=0;t=0;

x(0)=8.50cm=0.085m;x(0)=-8.50cm=-0.085m;

v(0)=0.93m/s;v(0)=-0.93m/s;

a(0)=45.0m/s2;a(0)=45.0m/s^2;

i)x(t)=Acos(ωt+ϕ0);i) x(t)=Acos(\omega t+\phi_0);

v(t)=Aωsin(ωt+ϕ0);v(t)=-A\omega sin(\omega t+\phi_0);

a(t)=Aω2cos(ωt+ϕ0);a(t)=-A\omega ^2cos(\omega t+\phi_0);

0.085=Acosϕ0    cosϕ0=0.085A;-0.085=Acos\phi_0\implies cos\phi_0=-\dfrac{0.085}{A};

0.93=Aωsinϕ0;-0.93=-A\omega sin\phi_0;

45=Aω2cosϕ0=ω20.085    ω2=529.4;ω=23rad/s;45=-A\omega^2cos\phi_0=\omega^2\sdot 0.085\implies \omega^2=529.4; \omega=23rad/s;

ii)0.93=23Asinϕ0;ii) -0.93=-23 Asin\phi_0;

0.085=Acosϕ0-0.085=Acos\phi_0;

10.94=23tanϕ0    tanϕ0=0.475;ϕ0=2.7rad;10.94=-23tan\phi_0\implies tan\phi_0=-0.475;\phi_0=2.7rad;

iii)A=0.085cosϕ0=0.094m;iii) A=\dfrac{-0.085}{cos\phi_0}=0.094m;

Answer:i)ω=23rad/s;i) \omega=23rad/s;

ii)ϕ0=2.7rad;ii)\phi_0=2.7rad;

iii)A=0.094miii)A=0.094m .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS