A proton collides elastically with another proton that is initially at rest. The incoming proton
has an initial speed of 3.5 x 105m/s and makes a glancing collision with the second. (At
close separations, the protons exert a repulsive electrostatic force on each other.) After the
collisions, one proton moves off at an angle of 37o to the original direction of motion and
the second deflects at an angle of φ to the same axis. Find the final speeds of the two
protons and the angle φ. [12]
"v_{1i}=v_{1f}cos \\theta + v_{2f}cos \\phi \\\\\n\n0 = v_{1f} sin \\theta -v_{2f} sin \\phi \\\\\n\nv_{1i}^2 = v_{1f}^2 +v_{2f}^2 \\\\\n\nv_{2f}cos \\phi= v_{1i} -v_{1f} cos \\theta \\\\\n\nv_{2f}sin \\phi = v_{1f}sin \\theta \\\\\n\nv_{2f}^2cos^2 \\phi + v_{2f}^2sin^2 \\phi = v_{1i}^2 -2v_{1i}v_{1f} cos \\theta + v_{1f}^2cos^2 \\theta + v_{1f}^2sin^2 \\theta \\\\\n\nv_{2f}^2 = v_{1i}^2 -2v_{1i}v_{1f}cos \\theta + v_{1f}^2 \\\\\n\nv_{1f}^2 + (v_{1i}^2 -2v_{1i}v_{1f}cos \\theta + v_{1f}^2)=v_{1i}^2 \\\\\n\nv_{1f}^2 -v_{1i}v_{1f}cos \\theta =0 \\\\\n\nv_{2f}=v_{1i} cos \\theta = (3.50 \\times 10^5 \\;m\/s)cos 37.0\u00ba = 2.80 \\times 10^5 \\;m\/s \\\\\n\nv_{2f} = \\sqrt{v_{1i}^2 -v_{1f}^2} = \\sqrt{ (3.50 \\times 10^5 \\;m\/s)^2 \u2013 (2.80 \\times 10^5 \\;m\/s)^2 } \\\\\n\n= 2.11 \\times 10^5 \\; m\/s \\\\\n\n\\phi = sin^{-1} \\frac{v_{1f}sin \\theta}{v_{2f}} \\\\\n\n= sin^{-1} \\frac{(2.80 \\times 10^5 \\; m\/s)sin 37.0\u00ba}{(2.11 \\times 10^5 \\;m\/s)} \\\\\n\n= 53.0\u00ba"
Comments
Leave a comment