m=100kg
R=0.5m
N=70
ωi=50(minrev)(1rev2πrad)(60s1min)=5.24rad/s
ωf=0
t=6s
The moment of inertia of a solid disk,
I=21mR2
After substituting the given values:
I=21(100)(0.5)2=12.5kgm2
Using the equation:
ωf=ωi+αt
α=60−5.24=−0.873rad/s2
Now, using τ=Iα
Putting values of α and I
τ=(12.5)(−0.873)=−10.9
The magnitude of torque due to kinetic frictional force is:
τ=fR
f=Rτ
f=0.5−10.9=−21.8
The kinetic friction force f=μkN
Hence,
μk=Nf
μk=7021.8=0.311
Comments