A uniform magnetic field, B= 3.0 x 10-4T in the +x direction. A proton (q=-+e) shoots through the field in the +y direction with a speed of 5.0 x 106m/s.
(a) Find the magnitude and direction of the force on the proton.
(b) Repeat with the proton replaced by an electron.
To be given in question
Magnetic force (B)="3\\times10^{-4}T"
Charge of proton (q)="+1.6\\times10^{-19}C"
Velocity (v)="5\\times10^6m\/sec"
"\\theta=90\u00b0"
To be asked in question
(a) magnetic force (for proton)=?
(b) magnetic force (for electron)=?
We know that
(a) magnetic force "( \\overrightarrow F)=q(\\overrightarrow{v}\\times \\overrightarrow{B})"
"F=qvBsin\\theta""\\hat{n}"
sin90°=1
Put values
"F =qvB\\hat{n}"
"\\hat{n}" direction is "( \\overrightarrow v\\times \\overrightarrow B)" direction
"F={1.6\\times10^{-19}\\times5\\times10^6\\times3\\times10^4}\\hat{ n}" "F=2.4\\times10^{-8} (\\hat{n})N"
"\\hat{n}" direction is "-\\hat{k}" direction
Magnitude of magnetic force
"F=2.4\\times 10^{-8}""-(\\hat{k})"
Magnetic force direction "-\\hat{k}"
Negative (-) z- axis
(b) for electron magnetic force
"\\overrightarrow F=q( \\overrightarrow v\\times \\overrightarrow B)"
"F=qvBsin\\theta(\\hat{n})"
"\\hat{n}" direction is "( \\overrightarrow v\\times \\overrightarrow B)" direction
Put value
"F={-1.6\\times10^{-19}\\times5\\times10^6\\times3\\times10^4}(\\hat{n})" "F=-2.4\\times10^{-8}(\\hat n)N"
"\\hat{n}" direction is "-\\hat{k}" But charge is"q=-1.6\\times10^{-19}C" then direction is"-(-\\hat n)=\\hat{n}"
Resultant "\\hat{n}" direction is"+\\hat{k}" direction
"F=2.4\\times 10^{-8}(\\hat n )N"
Magnitude of magnetic force
"F=2.4\\times 10^{-8}N" "(+\\hat{k})"
magnetic force direction
"(+\\hat{k})"
Positive (+ )z-axis
Comments
Leave a comment