the elastic constant of a helical spring is 9 N/m. a 1 kg body is attached from the spring and is made to move with simple harmonic motion. determine the period of vibration of the body and the acceleration when the body is 40 cm from its equilibrium position if the amplitude is 90 cm
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small T&=\\small k\\bar{x}=mg\\\\\n\\small \\bar{x}&=\\small \\frac{mg}{k}=\\frac{1kg\\times9.8ms^{-2}}{9Nm^{-1}}=1.089 \\,m\n\\end{aligned}"
equilibrium position is located at a position where the spring stretches itself to 1.089m more.
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\downarrow F&=\\small ma\\\\\n\\small mg-k(\\bar{x}+x)&=\\small m\\ddot{x}\\\\\n\\small -kx&=\\small m\\ddot{x}\\\\\n\\small \\ddot{x}&=\\small -\\frac{k}{m}\\cdot x \\cdots\\cdots(1)\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\omega&=\\small\\frac{2\\pi}{T}= \\sqrt{\\frac{k}{m}}\\\\\n\\small T&=\\small 2\\pi\\sqrt{\\frac{m}{k}}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\ddot{x}&=\\small -\\frac{9Nm^{-1}}{1\\,kg}\\times (\\pm 0.4\\,m)\\\\\n&=\\small \\mp\\,3.6\\,ms^{-2}\\\\\n\\small \\ddot{x}&=\\begin{cases}\n\\small-3.6\\,ms^{-2} \\,@ \\,x=+40\\,cm(below\\, the\\, \\bar{x}\\\\\n\\small +3.6\\,ms^{-2}\\,@\\, x=-40\\,cm(above\\,the\\, \\bar{x}\n\\end{cases}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \n\\end{aligned}"
Comments
Leave a comment