Answer to Question #184385 in Mechanics | Relativity for Konoha

Question #184385

What is the pressure drop due to the Bernoulli Effect as water goes into a 4.44-cm-diameter nozzle from a 15.25-cm-diameter fire hose while carrying a flow of 72 L/s? (b) To what maximum height above the nozzle can this water rise? 


Round your answer to 0 decimal places


1
Expert's answer
2021-05-04T06:36:20-0400

To be given in question

Radius

R1=7.625×102m\times10^{-2}m

R2=2.22×102m\times10^{-2}m

Q=72×103m/secQ=72\times10^{-3}m/sec

To be asked in question

Velocity

v1=?

v2=?

Part(a)

We know that

Bernoulli eqution

P1+12ρv12+ρgh1=P2+12ρv22+ρgh2P_{1}+\frac{1}{2}\rho v_{1}^2+\rho gh_{1}=P_{2}+\frac{1}{2}\rho v_{2}^2+\rho gh_{2}


We know that h=h1=h2

P1+12ρv12=P2+12ρv22(1)P_{1}+\frac{1}{2}\rho v_{1}^2=P_{2}+\frac{1}{2}\rho v_{2}^2\rightarrow(1)

Continuity equation

Q=A1v1=A2v2(2)Q=A_{1}v_{1}=A_{2}v_{2}\rightarrow(2)

v1=QA1v_{1}=\frac{Q}{A_{1}}

Put value

v1=72×1033.14×(7.625×102)2v_{1}=\frac{72\times10^{-3}}{3.14\times(7.625\times10^{-2})^2}

v1=3v_{1}=3 m/sec

v2=QA2v_{2}=\frac{Q}{A_{2}}

Put value

v2=72×1033.14×(2.22×102)2v_{2}=\frac{72\times10^{-3}}{3.14\times(2.22\times10^{-2})^2}

v2=46m/secv_{2}=46m/sec


Part (b)

We can re -written as equation (2)

P1+12ρv12=P2+12ρv22P_{1}+\frac{1}{2}\rho v_{1}^2=P_{2}+\frac{1}{2}\rho v_{2}^2

P=12ρv2212ρv12∆P=\frac{1}{2}\rho v_{2}^2-\frac{1}{2}\rho v_{1}^2

P=12ρ(v22v12)(3)∆P=\frac{1}{2}\rho( v_{2}^2-v_{1}^2)\rightarrow(3)

Put value in eqution (3)

P=1.053×106N/m2∆P=1.053\times10^6N/m^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment