. A particle moves so that its position vector at time t is given by ˜ r = e −t cost ˜ i + e −t sin t ˜ j. Show that at any time t, (a) its velocity ˜ v is inclined to the vector ˜ r at a constant angle 3π/4 radians. (b) its acceleration vector is at right angles to the vector ˜ r.
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\frac{d(u.v)}{dt}&=\\small \\frac{du}{dt},v+u.\\frac{dv}{dt}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\underline{a} .\\underline{b}&=\\small |\\underline{a}||\\underline{b}|\\cos\\theta\\\\\n\\small \\cos\\theta&=\\small \\frac{\\underline{a}.\\underline{b}}{|\\underline{a}||\\underline{b}|}\\cdots\\cdots(1)\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\underline{r}&=\\small e^{-t}\\cos\\theta.\\it{i}+e^{-t}\\sin\\theta.\\it{j}\\cdots\\cdots(given)\\\\\\\\\n\\small \\underline{v}&=\\small \\frac{dr}{dt}\\\\\n\\small&=\\small (-e^{-t}\\cos\\theta-e^{-t}\\sin\\theta)\\it{i}+(-e^{-t}\\sin\\theta+e^{-t}\\cos\\theta)\\it{j}\\\\\n&=\\small -e^{-t}(\\cos\\theta+\\sin\\theta)\\it{i}-e^{-t}(\\sin\\theta-\\cos\\theta)\\it{j}\\\\\\\\\nThen\\\\\n\\small \\underline{r}.\\underline{v}&=\\small -e^{-2t}(\\cos^2\\theta+\\sin\\theta \\cos\\theta )-e^{-2t}(\\sin^2\\theta-\\sin\\theta\\cos\\theta)\\\\\n&=\\small -e^{-2t}(\\cos^2\\theta+\\sin\\theta\\cos\\theta+\\sin^2\\theta-\\sin\\theta\\cos\\theta)\\\\\n&=\\small -e^{-2t}(1)\\\\\n&=\\small -e^{-2t}\\\\\\\\\n\n\\small |\\underline{r}|&=\\small \\sqrt{(e^{-t}\\cos\\theta)^2+(e^{-t}\\sin\\theta)^2}\\\\\n&=\\small \\sqrt{(e^{-t})^2\\times(\\cos^2\\theta+\\sin^2\\theta)}\\\\\n&=\\small e^{-t}\\\\\\\\\n\n\\small |\\underline{v}|&=\\small \\sqrt{[-e^{-t}(\\cos\\theta+\\sin\\theta)]^2+[-e^{-t}(\\sin\\theta-\\cos\\theta)]^2}\\\\\n&=\\small \\sqrt{(-e^{-t})^2\\times[(\\cos\\theta+\\sin\\theta)^2+(\\sin\\theta-\\cos\\theta)^2 ]}\\\\\n&=\\small e^{-t}.\\sqrt{\\cos^2\\theta+\\sin^2\\theta+2\\sin\\theta\\cos\\theta+\\sin^2\\theta+\\cos^2\\theta-2\\sin\\theta\\cos\\theta}\\\\\n&=\\small e^{-t}.\\sqrt{1+1}\\\\\n&=\\small \\sqrt2 e^{-t}\\\\\\\\\n\n\\small \\cos\\theta&=\\small \\frac{-e^{2t}}{e^{-t}\\times\\sqrt2e^{-t}}\\\\\n&=\\small -\\frac{1}{\\sqrt2}\\\\\n\\small \\theta&=\\small \\frac{3\\pi}{4}\\cdots\\cdots(\\because\\,\\pi\\leq \\theta\\leq0)\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\underline{a}&=\\small \\frac{d^2r}{dt^2}= \\frac{dv}{dt}\\\\\n&=\\small (e^{-t}(\\cos\\theta+\\sin\\theta)-e^{-t}(-\\sin\\theta+\\cos\\theta))\\it{i}-(-e^{-t}(\\sin\\theta-\\cos\\theta)+e^{-t}(\\cos\\theta+\\sin\\theta))\\it{j}\\\\\n&=\\small 2e^{-t}\\sin\\theta .\\it{i}-2 e^{-t}\\cos\\theta.\\it{j}\\\\\\\\\n\nThen\\\\\n\n\\small \\underline{a}.\\underline{r}&=\\small (2e^{-t}\\sin\\theta\\times e^{-t}\\cos\\theta)+(-2e^{-t}\\cos\\theta\\times e^{-t}\\sin\\theta)\\\\\n&=\\small 2e^{-2t}\\sin\\theta\\cos\\theta-2e^{-2t}\\sin\\theta\\cos\\theta\\\\\n&=\\small 0\n\\end{aligned}"
Comments
Leave a comment