2. A particle moves so that its position vector at time t is given by ˜ r = e −t cost ˜ i + e −t sin t ˜ j. Show that at any time t, (a) its velocity ˜ v is inclined to the vector ˜ r at a constant angle 3π/4 radians. (b) its acceleration vector is at right angles to the vector ˜ r.
To be given in question
"\\overrightarrow{r}" ="(e^{-t}cost) i+(e^{-t}sin) j"
To be asked in question
Velocity=?
Phase ="\\frac{3 \\pi}{4}"
r.a=?
We know that
"r=(e^{-t}cost )i+(e^{-t}sint)j \\rightarrow(1)"
Equation differenciate with respect to t
"v=\\frac{dr}{dt} \\rightarrow(2)"
Put value in eqution (1)and(2)
"v=\\frac{d}{dt}((e^{-t}cost) i+(e^{-t}sint) j)"
"v=(-e^{-t}cost-e^{-t}sint)i-(e^{-t}sint+e^{-t}cost)j \\rightarrow(3)"
"a=(2e^{-t}sint)i+(-2e^{-t}cost)j"
eqution (1) take mode
"\\mid r\\mid =" "\\sqrt{(e^{-t}cost)^2+(e^{-t}sint)^2}"
"|v|=\\sqrt{2e^{-2t}}=\\sqrt2e^-t"
"cos(r.v)=\\frac{r.v}{|r||v|}=\\frac{-e^{-2t}}{e^-t\\sqrt2e^{-t}}=-\\frac{\\sqrt2}{2}"
"angle(r.v)=\\frac{3\\pi}{4}"(b)
"r.a=e^{-t}cost(2e^{-t}sint)+e^{-t}sint(-2e^{-t}cost)=0"
Comments
Leave a comment