Question #183428

2. A particle moves so that its position vector at time t is given by ˜ r = e −t cost ˜ i + e −t sin t ˜ j. Show that at any time t, (a) its velocity ˜ v is inclined to the vector ˜ r at a constant angle 3π/4 radians. (b) its acceleration vector is at right angles to the vector ˜ r. 


1
Expert's answer
2021-04-22T10:59:29-0400

To be given in question

r\overrightarrow{r} =(etcost)i+(etsin)j(e^{-t}cost) i+(e^{-t}sin) j

To be asked in question

Velocity=?

Phase =3π4\frac{3 \pi}{4}

r.a=?

We know that

r=(etcost)i+(etsint)j(1)r=(e^{-t}cost )i+(e^{-t}sint)j \rightarrow(1)


Equation differenciate with respect to t

v=drdt(2)v=\frac{dr}{dt} \rightarrow(2)


Put value in eqution (1)and(2)

v=ddt((etcost)i+(etsint)j)v=\frac{d}{dt}((e^{-t}cost) i+(e^{-t}sint) j)

v=(etcostetsint)i(etsint+etcost)j(3)v=(-e^{-t}cost-e^{-t}sint)i-(e^{-t}sint+e^{-t}cost)j \rightarrow(3)

a=(2etsint)i+(2etcost)ja=(2e^{-t}sint)i+(-2e^{-t}cost)j


eqution (1) take mode

r=\mid r\mid = (etcost)2+(etsint)2\sqrt{(e^{-t}cost)^2+(e^{-t}sint)^2}

  1. r2=e2tcos2t+e2tsin2t+2e2tcostsint=2e2tr^2=e^{-2t}cos^2t+e^{-2t}sin^2t+2e^{-2t}costsint =2e^{-2t}

v=2e2t=2et|v|=\sqrt{2e^{-2t}}=\sqrt2e^-t

cos(r.v)=r.vrv=e2tet2et=22cos(r.v)=\frac{r.v}{|r||v|}=\frac{-e^{-2t}}{e^-t\sqrt2e^{-t}}=-\frac{\sqrt2}{2}

angle(r.v)=3π4angle(r.v)=\frac{3\pi}{4}

(b)

r.a=etcost(2etsint)+etsint(2etcost)=0r.a=e^{-t}cost(2e^{-t}sint)+e^{-t}sint(-2e^{-t}cost)=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS