To be given in question
r → \overrightarrow{r} r =( e − t c o s t ) i + ( e − t s i n ) j (e^{-t}cost) i+(e^{-t}sin) j ( e − t cos t ) i + ( e − t s in ) j
To be asked in question
Velocity=?
Phase =3 π 4 \frac{3 \pi}{4} 4 3 π
r.a=?
We know that
r = ( e − t c o s t ) i + ( e − t s i n t ) j → ( 1 ) r=(e^{-t}cost )i+(e^{-t}sint)j \rightarrow(1) r = ( e − t cos t ) i + ( e − t s in t ) j → ( 1 )
Equation differenciate with respect to t
v = d r d t → ( 2 ) v=\frac{dr}{dt} \rightarrow(2) v = d t d r → ( 2 )
Put value in eqution (1)and(2)
v = d d t ( ( e − t c o s t ) i + ( e − t s i n t ) j ) v=\frac{d}{dt}((e^{-t}cost) i+(e^{-t}sint) j) v = d t d (( e − t cos t ) i + ( e − t s in t ) j )
v = ( − e − t c o s t − e − t s i n t ) i − ( e − t s i n t + e − t c o s t ) j → ( 3 ) v=(-e^{-t}cost-e^{-t}sint)i-(e^{-t}sint+e^{-t}cost)j \rightarrow(3) v = ( − e − t cos t − e − t s in t ) i − ( e − t s in t + e − t cos t ) j → ( 3 )
a = ( 2 e − t s i n t ) i + ( − 2 e − t c o s t ) j a=(2e^{-t}sint)i+(-2e^{-t}cost)j a = ( 2 e − t s in t ) i + ( − 2 e − t cos t ) j
eqution (1) take mode
∣ r ∣ = \mid r\mid = ∣ r ∣= ( e − t c o s t ) 2 + ( e − t s i n t ) 2 \sqrt{(e^{-t}cost)^2+(e^{-t}sint)^2} ( e − t cos t ) 2 + ( e − t s in t ) 2
r 2 = e − 2 t c o s 2 t + e − 2 t s i n 2 t + 2 e − 2 t c o s t s i n t = 2 e − 2 t r^2=e^{-2t}cos^2t+e^{-2t}sin^2t+2e^{-2t}costsint =2e^{-2t} r 2 = e − 2 t co s 2 t + e − 2 t s i n 2 t + 2 e − 2 t cos t s in t = 2 e − 2 t ∣ v ∣ = 2 e − 2 t = 2 e − t |v|=\sqrt{2e^{-2t}}=\sqrt2e^-t ∣ v ∣ = 2 e − 2 t = 2 e − t
c o s ( r . v ) = r . v ∣ r ∣ ∣ v ∣ = − e − 2 t e − t 2 e − t = − 2 2 cos(r.v)=\frac{r.v}{|r||v|}=\frac{-e^{-2t}}{e^-t\sqrt2e^{-t}}=-\frac{\sqrt2}{2} cos ( r . v ) = ∣ r ∣∣ v ∣ r . v = e − t 2 e − t − e − 2 t = − 2 2
a n g l e ( r . v ) = 3 π 4 angle(r.v)=\frac{3\pi}{4} an g l e ( r . v ) = 4 3 π (b)
r . a = e − t c o s t ( 2 e − t s i n t ) + e − t s i n t ( − 2 e − t c o s t ) = 0 r.a=e^{-t}cost(2e^{-t}sint)+e^{-t}sint(-2e^{-t}cost)=0 r . a = e − t cos t ( 2 e − t s in t ) + e − t s in t ( − 2 e − t cos t ) = 0
Comments