Question #182480

(2-Dimensial Collision) A billiard ball with speed v = 2.0m/s approaches an identical stationary one (see figure at the right). The balls bounce off each other elastically, in such a way that the incoming one gets deflected by an angle θ = 35°. a. What are the final speeds of the balls? b. What is the angle, φ, at which the stationary ball is ejected?


1
Expert's answer
2021-04-19T17:12:53-0400

Along x direction

mu=0=mvfcosθ+mvfcosϕm u=0=mv_f cos \theta+mv_f cos \phi

u=vfcosθ+vfcosϕ.........(1)u=v_f cos \theta+v_f cos \phi.........(1)

Along y direction

0=mvfsinθ+mvfsinϕ0=mv_fsin \theta+mv_f sin \phi

u=vfcosθ+vfcosϕ.........(2)u=v_f cos \theta+v_f cos \phi.........(2)

sinθ=sinϕsin \theta= sin \phi

θ=ϕ.........(3)\theta= \phi.........(3)

Substituting (1)

u=vfcosθ+vfcosθu=v_f cos \theta+v_f cos \theta

u=2vfcosθu=2v_f cos \theta

vf=u2cosθ=22cos35=2.44154m/sv_f = \frac{u}{2cos \theta}= \frac{2}{2cos 35}=2.44154 m/s

As the collision is elastic , 12mu2=12mvf2+12mvf2\frac{1}{2}m u^2 =\frac{1}{2} m v^2_f +\frac{1}{2} m v^2_f

u2=2vf2u^2 =2 v^2_f

vf=u2.........(4)v_f=\frac{u}{\sqrt{2}}.........(4)

Substituting (4) in (3)

vf=u2cosθ=u2v_f=\frac{u}{2 cos \theta}=\frac{u}{\sqrt{2}}

2cosθ=22cos \theta=\sqrt{2}

cosθ=22cos \theta=\frac{\sqrt{2}}{2}

θ=450\theta=45^0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS