A box with a volume V = 0.0500 cubic meter lies at the bottom of a lake whose water has a density of 1.0 X 103kg/cubic meter. How much force is required to lift the box, if the box has a mass of a. 1,000 kg, b. 100 kg and c. 550 kg?
Given,
Volume of water, "V=0.05m^3"
density, "\\rho=1000kg\/m^3"
Accelaration due to gravity, "g=9.8m\/s^2"
The buoyant force on the box is
"=V\\times \\rho\\times g \n\n \\\\=0.05\\times 1000\\times 9.8\n\n \\\\ = 490 \\text{ N}"
Case-1: When box mass is 1000kg
Then force require to lift
"F_{\\text{ lift}}=mg-\\text{Buoyant force}"
"=1000(9.8)-490\\\\=9800-490\\\\=9310N"
Case-2: When box mass is 100kg
Then force require to lift
"F_{\\text{ lift}}=mg-\\text{Buoyant force}"
"=100(9.8)-490\\\\=980-490\\\\=490N"
Case-3: When box mass is 550kg
Then force require to lift
"F_{\\text{ lift}}=mg-\\text{Buoyant force}"
"=550(9.8)-490\\\\=5390-490\\\\=4900N"
Comments
Leave a comment