Answer to Question #165108 in Mechanics | Relativity for Sage Topaz

Question #165108

A box with a volume V = 0.0500 cubic meter lies at the bottom of a lake whose water has a density of 1.0 X 103kg/cubic meter. How much force is required to lift the box, if the box has a mass of a. 1,000 kg, b. 100 kg and c. 550 kg?

1
Expert's answer
2021-02-19T18:58:19-0500

Given,

Volume of water, V=0.05m3V=0.05m^3

density, ρ=1000kg/m3\rho=1000kg/m^3

Accelaration due to gravity, g=9.8m/s2g=9.8m/s^2


The buoyant force on the box is

          =V×ρ×g=0.05×1000×9.8=490 N=V\times \rho\times g \\=0.05\times 1000\times 9.8 \\ = 490 \text{ N}


Case-1: When box mass is 1000kg

Then force require to lift

F lift=mgBuoyant forceF_{\text{ lift}}=mg-\text{Buoyant force}

=1000(9.8)490=9800490=9310N=1000(9.8)-490\\=9800-490\\=9310N



Case-2: When box mass is 100kg

Then force require to lift

F lift=mgBuoyant forceF_{\text{ lift}}=mg-\text{Buoyant force}

=100(9.8)490=980490=490N=100(9.8)-490\\=980-490\\=490N



Case-3: When box mass is 550kg

Then force require to lift

F lift=mgBuoyant forceF_{\text{ lift}}=mg-\text{Buoyant force}

=550(9.8)490=5390490=4900N=550(9.8)-490\\=5390-490\\=4900N




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment