Find the tensions in the ropes for each case. Note that theta 1= 35, theta 2= 55, theta 3=60, m1= 6 kg, and m2=9 kg
The picture must be given, so I imagine the picture.
1) "\\theta_1 = 35^o \\space m_1 = 6kg"
"(m_1g)^2 = 2T^2 - 2T^2cos\\theta_1 = 2T^2(1-cos\\theta_1) \\to T = \\large\\frac{m_1g}{\\sqrt{2(1-cos\\theta_1)}}" = 99.7N
2) "\\theta_1 = 55^o \\space m_1 = 6kg"
"(m_1g)^2 = 2T^2 - 2T^2cos\\theta_1 = 2T^2(1-cos\\theta_1) \\to T = \\large\\frac{m_1g}{\\sqrt{2(1-cos\\theta_1)}}" = 64.9N
3) "\\theta_1 = 60^o \\space m_1 = 6kg"
"(m_1g)^2 = 2T^2 - 2T^2cos\\theta_1 = 2T^2(1-cos\\theta_1) \\to T = \\large\\frac{m_1g}{\\sqrt{2(1-cos\\theta_1)}}" = 60N
4) "\\theta_1 = 35^o \\space m_1 = 9kg"
"(m_1g)^2 = 2T^2 - 2T^2cos\\theta_1 = 2T^2(1-cos\\theta_1) \\to T = \\large\\frac{m_1g}{\\sqrt{2(1-cos\\theta_1)}}" = 149.6N
5) "\\theta_1 = 55^o \\space m_1 = 9kg"
"(m_1g)^2 = 2T^2 - 2T^2cos\\theta_1 = 2T^2(1-cos\\theta_1) \\to T = \\large\\frac{m_1g}{\\sqrt{2(1-cos\\theta_1)}}" = 97.4N
6) "\\theta_1 = 60^o \\space m_1 = 9kg"
"(m_1g)^2 = 2T^2 - 2T^2cos\\theta_1 = 2T^2(1-cos\\theta_1) \\to T = \\large\\frac{m_1g}{\\sqrt{2(1-cos\\theta_1)}}" = 90N
Comments
Leave a comment