Question #164636

A 15.0 kg child slides down a 4.25 m playground slide that makes a 45o with the horizontal axis. While sliding, a 2.5 N force of friction acts on the child. What will the child’s speed be when she reaches the bottom of the slide?


1
Expert's answer
2021-02-19T10:31:17-0500

Let's apply the Newton's Second Law of Motion and find the acceleration of the child:


mgsinθFfr=ma,mgsin\theta-F_{fr}=ma,a=mgsinθFfrm,a=\dfrac{mgsin\theta-F_{fr}}{m},a=15 kg9.8 ms2sin452.5 N15 kg=6.76 ms2.a=\dfrac{15\ kg\cdot9.8\ \dfrac{m}{s^2}\cdot sin45^{\circ}-2.5\ N}{15\ kg}=6.76\ \dfrac{m}{s^2}.

Finally, we can find the child’s speed when she reaches the bottom of the slide from the kinematic equation:


v2=v02+2ad,v^2=v_0^2+2ad,v=v02+2ad,v=\sqrt{v_0^2+2ad},v=0+26.76 ms24.25 m=7.58 ms.v=\sqrt{0+2\cdot6.76\ \dfrac{m}{s^2}\cdot4.25\ m}=7.58\ \dfrac{m}{s}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS