Answer to Question #165020 in Mechanics | Relativity for gabriel

Question #165020

a particle is projected with velocity whose horizontal and vertical component are U and V respectively and the particle passes through a point of projection are H and K respectively

prove 2U^2K+gH=2UVH


1
Expert's answer
2021-02-19T10:29:16-0500

Given Parameters-

Let the velocity of projection be vv , and

angle of projection be θ\theta


H=horizontal component of velocity=vcosθH=\text{horizontal component of velocity}=vcos\theta

V=Vertical component of velocity=vsinθV=\text{Vertical component of velocity}=vsin\theta


tanθ=vsinθvcosθ=VU     (1)tan\theta=\dfrac{vsin\theta}{vcos\theta}=\dfrac{V}{U}~~~~~-(1)


The trajectory Equation for projectile motion is given by-

y=x tanθgx22v2cos2θy=\text{x tan}\theta-\dfrac{gx^2}{2v^2cos^2\theta}


Since The particle Passes through (H,K)(H,K)


K=HtanθgH22(vcosθ)2\Rightarrow K=Htan\theta-\dfrac{gH^2}{2(vcos\theta)^2}


Substitute the above Parameter in above equation:-

K=HVUgH22U2\Rightarrow K=\dfrac{HV}{U}-\dfrac{gH^2}{2U^2}


K=2UHVgH22U2\Rightarrow K=\dfrac{2UHV-gH^2}{2U^2}


2U2K=2UHVgH2\Rightarrow 2U^2K=2UHV-gH^2


2U2K+gH2=2UHV\Rightarrow 2U^2K+gH^2=2UHV


Hence proved.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment