Question #159701

A 12 kg mass was projected with

an initial kinetic energy of 450J along

the surface of a rough plane inclined

at 30° above the horizontal. If the

mass comes to rest after traveling 3.5m along the plane, calculate the

coefficient of kinetic friction between the mass and the plane.



1
Expert's answer
2021-01-31T03:40:10-0500

Let's apply the Newton's Second Law of Motion:


mgsinθμkmgcosθ=ma.-mgsin\theta-\mu_kmgcos\theta=ma.

From this equation we can find the coefficient of kinetic friction between the mass and the plane:


μk=gsinθagcosθ.\mu_k=\dfrac{-gsin\theta-a}{gcos\theta}.

Let's find the initial velocity of the mass from the definition of kinetic energy:


v=2KEm=2450 J12 kg=8.66 ms.v=\sqrt{\dfrac{2KE}{m}}=\sqrt{\dfrac{2\cdot450\ J}{12\ kg}}=8.66\ \dfrac{m}{s}.

Then, we can find the deceleration of the mass:


a=v2v022d=0(8.66 ms)223.5 m=10.71 ms.a=\dfrac{v^2-v_0^2}{2d}=\dfrac{0-(8.66\ \dfrac{m}{s})^2}{2\cdot3.5\ m}=-10.71\ \dfrac{m}{s}.

Finally, substituting aa into the formula for μk\mu_k, we get:


μk=9.8 ms2sin30(10.71 ms)9.8 ms2cos30=0.68\mu_k=\dfrac{-9.8\ \dfrac{m}{s^2}\cdot sin30^{\circ}-(-10.71\ \dfrac{m}{s})}{9.8\ \dfrac{m}{s^2}\cdot cos30^{\circ}}=0.68

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS