A particle starts from rest and the initial velocity is 0
a=v−vot→v=ata = \large\frac{v - v_o}{t} \to v = ata=tv−vo→v=at
a=k(4v+1)ms2a = k(4v+1) \large\frac{m}{s^2}a=k(4v+1)s2m
Given that v=e2−14v = \large\frac{e^2-1}{4}v=4e2−1 when t = 1
v(1)=a=v(1) = a =v(1)=a= e2−14\large\frac{e^2-1}{4}4e2−1 =k(4v+1)= k(4v+1)=k(4v+1)
e−12∗e+12\large\frac{e-1}{2}*\frac{e+1}{2}2e−1∗2e+1 =k∗(4v+1)= k * (4v+1)=k∗(4v+1)
v=e2t−14v = \large\frac{e^{2t} - 1}{4}v=4e2t−1 →v(1)=e2−14\to v(1) = \large\frac{e^2-1}{4}→v(1)=4e2−1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments