Given. v0=36 (m/s)v_0=36\ (m/s)v0=36 (m/s) ; tanu=3/2→u=56.3°\tan u=3/2\to u=56.3°tanu=3/2→u=56.3° ; s=120(m)s=120(m)s=120(m)
a) h=v0yt−gt2/2=v0⋅sinu⋅t−gt2/2=h=v_{0y}t-gt^2/2=v_0\cdot\sin u\cdot t-gt^2/2=h=v0yt−gt2/2=v0⋅sinu⋅t−gt2/2=
=36⋅sin56.3°⋅t−9.8⋅t2/2≈30t−5t2=36\cdot\sin56.3°\cdot t-9.8\cdot t^2/2\approx30t-5t^2=36⋅sin56.3°⋅t−9.8⋅t2/2≈30t−5t2 . Answer
b) hmax=v0y22g=(v0⋅sinu)22g=(36⋅sin56.3°)22⋅9.8=45.8(m)h_{max}=\frac{v_{0y}^2}{2g}=\frac{(v_0\cdot\sin u)^2}{2g}=\frac{(36\cdot\sin 56.3°)^2}{2\cdot 9.8}=45.8(m)hmax=2gv0y2=2g(v0⋅sinu)2=2⋅9.8(36⋅sin56.3°)2=45.8(m) .Answer
c) t=120/(36⋅cos56.3°)≈6(s)t=120/(36\cdot\cos56.3°)\approx6(s)t=120/(36⋅cos56.3°)≈6(s) . Answer
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment