Question #156849
A particle P is projected with speed 50m/s at an angle r to the horizontal from a point O on a horizontal plane. Given that the particle attains a maximum height of 31.25m, calculate:
(a) the value of r
(b) the speed of P after 3 seconds
(c) the horizontal distance travelled by P while above the height of 30m.
1
Expert's answer
2021-01-28T19:40:49-0500

(a) Let's first find the yy-component of the initial speed of the projectile:


vy2=v0y22gymax,v_y^2=v_{0y}^2-2gy_{max},0=v0y22gymax,0=v_{0y}^2-2gy_{max},v0y=2gymax=29.8 ms231.25 m=24.75 ms.v_{0y}=\sqrt{2gy_{max}}=\sqrt{2\cdot9.8\ \dfrac{m}{s^2}\cdot31.25\ m}=24.75\ \dfrac{m}{s}.


Then, we can find the angle rr from the trigonometry:


sinr=v0yv0,sinr=\dfrac{v_{0y}}{v_0},r=sin1(v0yv0)=sin1(24.75 ms50.0 ms)=30.r=sin^{-1}(\dfrac{v_{0y}}{v_0})=sin^{-1}(\dfrac{24.75\ \dfrac{m}{s}}{50.0\ \dfrac{m}{s}})=30^{\circ}.

(b) The horizontal component of particle's speed remains unchanged during the flight:


vx=v0cosr=50 mscos30=43.3 ms.v_x=v_0cosr=50\ \dfrac{m}{s}\cdot cos30^{\circ}=43.3\ \dfrac{m}{s}.

Let's find the vertical component of particle's speed after 3 second:


vy=v0sinrgt,v_y=v_0sinr-gt,vy=50 mssin309.8 ms23 s=4.4 ms.v_y=50\ \dfrac{m}{s}\cdot sin30^{\circ}-9.8\ \dfrac{m}{s^2}\cdot3\ s=-4.4\ \dfrac{m}{s}.

Finally, we can find the speed of P after 3 seconds from the Pythagorean theorem:


v=vx2+vy2,v=\sqrt{v_x^2+v_y^2},v=(43.3 ms)2+(4.4 ms)2=43.52 ms.v=\sqrt{(43.3\ \dfrac{m}{s})^2+(-4.4\ \dfrac{m}{s})^2}=43.52\ \dfrac{m}{s}.

(c) Let's first find the time that the projectile takes to reach the maximum height:


0=v0sinrgt,0=v_0sinr-gt,tmax=v0sinrg=50 mssin309.8 ms2=2.55 s.t_{max}=\dfrac{v_0sinr}{g}=\dfrac{50\ \dfrac{m}{s}\cdot sin30^{\circ}}{9.8\ \dfrac{m}{s^2}}=2.55\ s.

Then, let's calculate the time that the projectile takes to reach 30 meters height:


y=v0tsinr12gt2,y=v_0tsinr-\dfrac{1}{2}gt^2,4.9t225t+30=0.4.9t^2-25t+30=0.

This quadratic equation has two roots t1=3.17 st_1=3.17\ s and t2=1.93 s.t_2=1.93\ s. Since, t1>tmaxt_1>t_{max} (which is impossible) the correct answer is t=1.93 s.t=1.93\ s. Then, the total time during which the particle travelled above the height of 30 m can be calculated as follows:


ttot=2(tmaxt)=2(2.55 s1.93 s)=1.24 s.t_{tot}=2(t_{max}-t)=2\cdot(2.55\ s-1.93\ s)=1.24\ s.

Finally, we can find the horizontal distance travelled by P while above the height of 30 m:


x=v0tcosr=50 mscos301.24 s=53.7 m.x=v_0tcosr=50\ \dfrac{m}{s}\cdot cos30^{\circ}\cdot1.24\ s=53.7\ m.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS