A particle of mass m has a speed v=α/x, where x is it’s
displacement. Find the force F(x) responsible.
F(x)=-mα2
/x3
"v=\\frac{a}{x} \\\\\n\n\\frac{dv}{dx}=-\\frac{a}{x^2} \\\\\n\n\\frac{dv}{dt} = \\frac{dv}{dx} \\times \\frac{dx}{dt} \\\\\n\n= v\\frac{dv}{dx} \\\\\n\na = v\\frac{dv}{dx} \\\\\n\n= -\\frac{va}{x^2} \\\\\n\n= -\\frac{a}{x} \\times \\frac{a}{x^2} \\\\\n\n= -\\frac{a^2}{x^3} \\\\\n\nF = ma \\\\\n\n= m(-\\frac{a^2}{x^3}) \\\\\n\nF(x) = -\\frac{ma^2}{x^3}"
Comments
Leave a comment