A particle of mass m has a speed v=α/x, where x is it’s
displacement. Find the force F(x) responsible.
F(x)=-mα2
/x3
v=axdvdx=−ax2dvdt=dvdx×dxdt=vdvdxa=vdvdx=−vax2=−ax×ax2=−a2x3F=ma=m(−a2x3)F(x)=−ma2x3v=\frac{a}{x} \\ \frac{dv}{dx}=-\frac{a}{x^2} \\ \frac{dv}{dt} = \frac{dv}{dx} \times \frac{dx}{dt} \\ = v\frac{dv}{dx} \\ a = v\frac{dv}{dx} \\ = -\frac{va}{x^2} \\ = -\frac{a}{x} \times \frac{a}{x^2} \\ = -\frac{a^2}{x^3} \\ F = ma \\ = m(-\frac{a^2}{x^3}) \\ F(x) = -\frac{ma^2}{x^3}v=xadxdv=−x2adtdv=dxdv×dtdx=vdxdva=vdxdv=−x2va=−xa×x2a=−x3a2F=ma=m(−x3a2)F(x)=−x3ma2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments