Let's write the vertical displacement for the first and second ball:
"y_1=v_{01}t-\\dfrac{1}{2}gt^2,""y_2=v_{02}(t-\\Delta t)-\\dfrac{1}{2}g(t-\\Delta t)^2."The two balls will meeting when "y_1=y_2":
"v_{01}t-\\dfrac{1}{2}gt^2=v_{02}(t-\\Delta t)-\\dfrac{1}{2}g(t-\\Delta t)^2,""v_{01}t-\\dfrac{1}{2}gt^2=v_{02}t-v_{02}\\Delta t-\\dfrac{1}{2}gt^2+gt\\Delta t-\\dfrac{1}{2}g\\Delta t^2,""(v_{01}-v_{02}-g\\Delta t)t=-v_{02}\\Delta t-\\dfrac{1}{2}g\\Delta t^2,""t=\\dfrac{(v_{01}-v_{02}-g\\Delta t)}{(-v_{02}\\Delta t-\\dfrac{1}{2}g\\Delta t^2)},""t=\\dfrac{(10\\ ms^{-1}-25\\ ms^{-1}-9.8\\ ms^{-2}\\cdot 1\\ s)}{(-25\\ ms^{-1}\\cdot 1\\ s-\\dfrac{1}{2}\\cdot 9.8\\ ms^{-2}\\cdot(1\\ s)^2)}=0.83\\ s."As we find the time at what the two balls were met, we can find the height:
"y=10\\ \\dfrac{m}{s}\\cdot 0.83\\ s-\\dfrac{1}{2}\\cdot 9.8\\ \\dfrac{m}{s^2}\\cdot (0.83\\ s)^2=4.92\\ m."Answer:
"y=4.92\\ m."
Comments
Leave a comment