Question #149700
Find the centre and radius of the equation of the circle. 2x^2+2y^2-8x+5y+10=0
1
Expert's answer
2020-12-10T08:48:28-0500

Explanations & Calculations


  • A rearrangement is needed to identify the needed quantities.

2x2+2y28x+5y+10=0x2+y24x+52y+5=0[x24x]+[y2+52y]+5=0[(x2)24]+[(y+54)22516]+5=0(x2)2+(y+54)2916=0[x2]2+[y(54)]2=(34)2\qquad\qquad \begin{aligned} \small 2x^2 +2y^2-8x+5y+10&= \small0\\ \small x^2 +y^2 -4x+\frac{5}{2}y+5&=\small 0\\ \small \big[x^2-4x\big]+\big[y^2+\frac{5}{2}y\big]+5&=\small 0\\ \small \big[(x-2)^2-4\big]+\big[(y+\frac{5}{4})^2-\frac{25}{16}\big]+5&=\small 0\\ \small (x-2)^2+(y+\frac{5}{4})^2-\frac{9}{16}&= \small 0\\ \small \Big[x-2\Big]^2+\Big[y-(\frac{5}{4})\Big]^2 &=\small \Big(\frac{3}{4}\Big)^2\\ \end{aligned}


  • By comparing this equation with that used at the derivation of the equation of a circle (xf)2+(yg)2=r2\small (x-f)^2+(y-g)^2=r^2 ,


  • Therefore,
  • Centre = (2,54)(2,-\frac{5}{4})
  • Radius = 34\frac{3}{4}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS