Answer to Question #149528 in Mechanics | Relativity for Mikkos Joshua Garcia

Question #149528
At takeoff, a rocket launched vertically from Earth has 2500 kg, 1500 kg of which is fuel. (a) If the initial acceleration of the rocket os 4.9 m/s^2 and its fuel consumption is 15 kg/s, find the speed of the exhaust gases. (b) What is the final acceleration of the rocket? Ignore the variation of g with altitude.
1
Expert's answer
2020-12-17T09:01:26-0500

Force acting on a rocket\text {Force acting on a rocket}

F=ma=25004.9=12250F = ma = 2500*4.9 = 12250

F=FrFtF = F_r- F_t

where Fr reactive force Ft the force of gravity\text{where } F_r \text{ reactive force } F_t \text{ the force of gravity}

Ft=mg=25009.8=24500F_t= mg = 2500*9.8 = 24500

Fr=F+Ft=12250+24500=36750F_r = F+F_t= 12250+24500= 36750

Fr=Vdmdt  where Vspeed of the exhaust gases; dmdt=15F_r = V \frac{dm}{dt} \ \text{ where } V \text{speed of the exhaust gases; }\frac{dm}{dt}=15

V=3675015=2450 m/sV = \frac{36750}{15}=2450\ m/s

according to Tsiolkovsky’s formula:\text{according to Tsiolkovsky's formula:}

Vr=ulnm0mwhere u specific impulse approximately equalV_r= u\ln\frac{m_0}{m} \text {where } u\text{ specific impulse approximately equal}

to the flow rate of gases\text{to the flow rate of gases}

t=150015=100st = \frac{1500}{15}=100s

t=100s time spent on all fuelt =100s \text{ time spent on all fuel}

Vr=ulnm0m=2450ln250025001500=2244V_r= u\ln\frac{m_0}{m}= 2450*\ln\frac{2500}{2500-1500}=2244

a=VrV0t=22440100=22.44m/s2a = \frac{V_r-V_0}{t}=\frac{2244-0}{100}=22.44 m/s^2

Answer: 2450 m/s speed of the exhaust gases; 22.44m/s^2 acceleration of the rocket





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment