Explanations & Calculations
5)
- Since the acceleration is constant any of the 4 motion equations can be used & by using appropriately,
- "\\qquad\\qquad\n\\begin{aligned}\n\\small s&=ut+\\frac{1}{2}at^2\\\\\n\\small 300&= \\small 0+\\frac{1}{2}a(22.4)^2\\\\\na&= \\small \\bold{1.196\\,ms^{-2}}\n\\end{aligned}" : Since s & t are known
- "\\qquad\\qquad\n\\begin{aligned}\n\\small s&=\\frac{(v+u)t}{2}\\\\\n\\small 300&= \\small \\frac{(v+0)\\times 22.4}{2}\\\\\n\\small v&= \\small \\bold{26.786\\,ms^{-1}}\n\\end{aligned}" : Can be calculated using other equations as a is known by then
6)
- Again as a constant deceleration, any of the 4 motion equations can be used.
- "\\small 35mi\/hr=\\large\\frac{35\\times 1.609\\times 1000m}{(3600)s}=\\small 56315ms^{-1}"
- "\\small 2.5ft=2.5\\times 0.3048m=0.762m"
- (a) using "\\small v^2 = u^2 +2as"
"\\qquad\\qquad\n\\begin{aligned}\n\\small 0^2&= \\small 56315^2+2a\\times 0.762\\\\\n\\small a&= \\small -2.08\\times 10^{9}ms^{-2}\n\\end{aligned}"
- (b)using "\\small s = \\large\\frac{(v+u)t}{2}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small 0.762 &= \\small \\frac{(0+56315)t}{2}\\\\\n\\small t &= \\small \\bold{2.706\\times 10^{-5}s}\n\\end{aligned}"
7)
- Both the vehicles spend the same time until they meet. Therefore, truck travels 75m during that period while the a.m travels "\\small (x+75) m". (if the initial separation between them is x)
- (a)Then apply "\\small s=ut +\\frac{1}{2}at^2" for the motion of the truck.
"\\qquad\\qquad\n\\begin{aligned}\n\\small 75&= \\small 0+\\frac{1}{2}\\times 2ms^{-2}\\times t^2\\\\\n\\small t&= \\small \\pm\\sqrt{\\frac{75\\times 2}{2}}\\\\\n\\small t&= \\small \\bold{8.66s}\n\\end{aligned}"
- (b) By applying "\\small s = ut +\\frac{1}{2}at^2" for the automobile, for its motion until the overtake
"\\qquad\\qquad\n\\begin{aligned}\n\\small x+75 &= \\small 0+\\frac{1}{2}\\times 3ms^{-2}\\times (8.66s)^2\\\\\n\\small x &= \\small \\bold{37.49m} \n\\end{aligned}"
- (c) By applying "\\small v = u+at" on both the vehicles
"\\qquad\\qquad\n\\begin{aligned}\n\\end{aligned}"For the a.m For the truck
"\\qquad\\qquad\n\\begin{aligned}\n\\small v_a&= \\small 0+3ms^{-2}\\times 8.66s\\\\\n&=\\small \\bold{25.98ms^{-1}}\n\\end{aligned}" "\\begin{aligned}\n\\small v_t&= \\small 0+2ms^{-2}\\times 8.66s\\\\\n&= \\small \\bold{17.32ms^{-1}}\n\\end{aligned}"
Comments
Leave a comment