Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small F_1 -F_2 &= \\small \\Delta m a=\\Delta m \\frac{\\partial^2 y}{\\partial t^2}\\\\\n\\small F_1 -F_2 &= \\small m \\Delta x \\frac{\\partial^2 y}{\\partial t^2 }\\cdots (1)\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\tan\\theta _1 =\\small \\frac{F_1}{F_x} \n\\end{aligned}" and "\\qquad\\qquad\n\\begin{aligned}\n\\small \\tan\\theta_2 =\\frac{F_2 }{F_x}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\tan \\theta _1 &= \\small \\frac{\\partial y}{\\partial x}\\Big|_B\n\\end{aligned}" and "\\qquad\\qquad\n\\begin{aligned}\n\\small \\tan\\theta_2 =\\small\\frac{\\partial y}{\\partial x}\\Big|_A\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small F_x\\Bigg[\\frac{\\partial y}{\\partial x}\\Big|_B-\\frac{\\partial y}{\\partial x}\\Big|_A\\Bigg]&= \\small m\\Delta x\\frac{\\partial^2y}{\\partial t^2}\\\\\n\\small \\frac{\\Bigg[\\frac{\\partial y}{\\partial x}\\Big|_B-\\frac{\\partial y}{\\partial x}\\Big|_A\\Bigg]}{\\Delta x}&= \\small \\frac{m}{F_x}\\frac{\\partial^2y}{\\partial t^2}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\frac{\\partial^2y}{\\partial x^2 } &= \\small \\frac{m}{F_x}\\frac{\\partial ^2 y}{\\partial t^2 }\\cdots(2)\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\frac{m}{F_x} &= \\small \\frac{1}{v^2}\\\\\n\\small |v| = \\sqrt{\\frac{F_x}{m}}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small |v| = \\sqrt{\\frac{T}{m}}\n\\end{aligned}"
Comments
Leave a comment