According to the law of energy conservation kinetic energy of the rolling ball is equal to potential energy of the ball on height h:
"E_{k}=E_{p}"
"\\frac{m\\times V^2}{2}+\\frac{I\\times \\omega^2}{2}=m\\times g\\times h"
I - moment of inertia of the ball
"I=\\frac{2}{5}\\times m \\times r^2"
where m - mass, r - radius.
"\\omega" is anglular velocity
"\\omega = \\frac{V}{r}"
calculating
"\\omega = \\frac{2}{0.11}=18.18"
"I=\\frac{2}{5}\\times 7.2 \\times 0.11^2=0.035"
"\\frac{m\\times V^2+I\\times \\omega^2}{2}=m\\times g\\times h"
"h=\\frac{m\\times V^2+I\\times \\omega^2}{2\\times m \\times g}"
"h=\\frac{7.2\\times 2^2+0.035\\times 18.18^2}{2\\times 7.2 \\times 9.8}=\\frac{28.8+11.57}{141.12}=0.29m"
Comments
Leave a comment