"\\textsf{From the diagram,}\\\\\nF_r=\\textsf{Kinetic force of friction}\\\\\n\\mu=\\textsf{coefficient of kinetic friction}\\\\\nN_r=\\textsf{Normal force on the piano}\\\\\nm=\\textsf{mass of the piano}\\\\\nW=\\textsf{weight of the piano}\\\\\ng=\\textsf{acceleration due to gravity}\\\\\n\\theta=\\textsf{angle of inclination of the ramp}\\\\"
(ii) The normal force,
"\\hspace{0.4cm}\\begin{aligned}N_r&=mgcos\\theta\\\\ &=120kg \u00d7 9.81ms^{-2} \u00d7 cos(30\u00b0)\\\\\n&=1019.49N\\end{aligned}" (iii) The kinetic force of friction,
"\\hspace{0.4cm}\\begin{aligned}F_r&=\\mu N_r\\\\\n&=0.1\u00d71019.49N\\\\\n&=101.95N\\end{aligned}"
(iii) According to Newton's second law,
"\\hspace{0.4cm}\\begin{aligned}&F-F_r=ma\\\\\n&mgsin\\theta-F_r=ma\\\\\n&120kg\u00d79.81ms^{-2}\u00d7sin(30\u00b0)-101.95N=120kg\u00d7a\\\\\n&a=\\frac{486.65N}{120kg}\\\\\n&a=4.06ms^{-2}\\end{aligned}\\\\"
Comments
Leave a comment