(a) The initial kinetic energy of the alpha particle must equal the electrostatic potential energy at the distance of closest approach.
"K_{i}= {U_{f}= \\frac{K_{e}qQ}{r_{min}}}" , therefore,
"r_{min}= \\frac{8.99\\times10^{9}\\times2\\times79\\times(1.60\\times10^{-19})^{2}}{0.500\\times1.60\\times10^{-13}}= 4.55\\times10^{-13}m"
(b) we know that, "K_{i}=\\frac{1}{2}m_{\\alpha}V^{2}_{i}=\\frac{K_{e}qQ}{r_{min}}"
"V_{i}= \\sqrt\\frac{2K_{e}qQ}{m_{\\alpha}r_{min}}"
"= \\sqrt\\frac{2(\\times8.99\\times10^{9})\\times2\\times79(1.660\\times10^{-19})^{2}}{4.00\\times1.66\\times10^{-27}\\times3.0\\times10^{-18}} = 1.91\\times10^{9}m\/s"
Comments
Leave a comment