Let a proton "A" of mass "m" and velocity "\\vec {u_A}" collides with another stationary proton "B" .
After collision the proton "A" moves with velocity "\\vec {v_A}" at an angle "\\theta" with the initial direction AB and the proton "B" moves with velocity "\\vec{v_B}" at an angle "\\phi" with AB as shown in the figure.
Conservation of linear momentum:
Conservation of linear momentum along x-axis:
"mu_A+m\\times 0=mv_A\\cos\\theta+mv_B\\cos\\phi \\\\\n\\Rightarrow v_B\\cos\\phi =u_A-v_A\\cos\\theta \\qquad ........(1)"
Conservation of linear momentum along y-axis:
"mv_A\\sin\\theta=mv_B\\sin\\phi \\\\\n\\Rightarrow v_B\\sin\\phi=v_A\\sin\\theta\\qquad ...........(2)"
Squaring (1) and (2) and adding them together,
"v^2_B\\cos^2\\phi+v^2_B\\sin^2\\phi =(u_A-v_A\\cos\\theta )^2+v^2_A\\sin^2\\theta\\\\\n\\Rightarrow v^2_B(\\cos^2\\phi+\\sin^2\\phi)=(u^2_A-2u_Av_A \\cos\\theta+v^2_A\\cos^2\\theta)+v^2_A\\sin^2\\theta\\\\\n\\Rightarrow v^2_B(\\cos^2\\phi+\\sin^2\\phi)=u^2_A-2u_Av_A \\cos\\theta+v^2_A(\\cos^2\\theta+\\sin^2\\theta)\\\\\n\\Rightarrow v^2_B=u^2_A-2u_Av_A \\cos\\theta+v^2_A"
where we have used the property "\\sin^2x+cos^2x=1" .
"\\therefore v_B=\\sqrt{ u^2_A-2u_Av_A \\cos\\theta+v^2_A}" ..............(3)
Given "u_A=3.00\\times 10^2\\ m\/s"
"v_A=1.50\\times 10^2\\ m\/s"
"\\theta=60\\degree"
Substituting these values in equation (3), we get
"v_B=\\sqrt{ (3.00\\times 10^2)^2-2\\times 3.00\\times 10^2\\times 1.50\\times 10^2\\times \\cos60\\degree+(1.50\\times 10^2)^2}"
"\\Rightarrow v_B=2.56\\times 10^2\\ m\/s"
Thus, the speed of the proton B after collision is "2.56\\times 10^2\\ m\/s" .
Kinetic energy:
Total kinetic energy before collision = "\\frac{1}{2}mu^2_A"
Total kinetic energy after collision "=\\frac{1}{2}mv^2_A+\\frac{1}{2}mv^2_B"
For the collision to be elastic, the total kinetic energy before collision must be equal to the total kinetic energy after collision i.e, for elastic collision
"\\frac{1}{2}mu^2_A=\\frac{1}{2}mv^2_A+\\frac{1}{2}mv^2_B\\\\\n\\Rightarrow u^2_A=v^2_A+v^2_B"
If this condition holds, the collision is elastic. Otherwise, the collision is inelastic.
Let's check it now
"u^2_A=(3.00\\times 10^2)^2=9.00\\times 10^4"
"v^2_A+v^2_B=(1.50\\times 10^2)^2+(2.56\\times 10^2)^2=8.80\\times 10^4"
Thus we can see that "u^2_A>(v^2_A+v^2_B)" which implies loss of energy and hence the collision is inelastic.
Answer: (i) The velocity of proton B after collision is "2.56\\times 10^2\\ m\/s"
(ii) The collision is not elastic.
Comments
Leave a comment