Question #141210
In a nuclear collision, a proton A is incident on a stationary neighboring proton B with a velocity of 3.00 x 10 m/s. After impact, A moves in the direction BC inclined at 600 with a velocity of 1.50 x 102 m/s. B then moves in the direction BD declined at 0. If BC makes an angle 600with the initial direction (AB) of A and BD makes an angle G with it ;
ii) Verify whether or not the collision is elastic.
1
Expert's answer
2020-11-05T10:12:27-0500


Let a proton AA of mass mm and velocity uA\vec {u_A} collides with another stationary proton BB .

After collision the proton AA moves with velocity vA\vec {v_A} at an angle θ\theta with the initial direction AB and the proton BB moves with velocity vB\vec{v_B} at an angle ϕ\phi with AB as shown in the figure.

Conservation of linear momentum:

Conservation of linear momentum along x-axis:

muA+m×0=mvAcosθ+mvBcosϕvBcosϕ=uAvAcosθ........(1)mu_A+m\times 0=mv_A\cos\theta+mv_B\cos\phi \\ \Rightarrow v_B\cos\phi =u_A-v_A\cos\theta \qquad ........(1)

Conservation of linear momentum along y-axis:

mvAsinθ=mvBsinϕvBsinϕ=vAsinθ...........(2)mv_A\sin\theta=mv_B\sin\phi \\ \Rightarrow v_B\sin\phi=v_A\sin\theta\qquad ...........(2)

Squaring (1) and (2) and adding them together,

vB2cos2ϕ+vB2sin2ϕ=(uAvAcosθ)2+vA2sin2θvB2(cos2ϕ+sin2ϕ)=(uA22uAvAcosθ+vA2cos2θ)+vA2sin2θvB2(cos2ϕ+sin2ϕ)=uA22uAvAcosθ+vA2(cos2θ+sin2θ)vB2=uA22uAvAcosθ+vA2v^2_B\cos^2\phi+v^2_B\sin^2\phi =(u_A-v_A\cos\theta )^2+v^2_A\sin^2\theta\\ \Rightarrow v^2_B(\cos^2\phi+\sin^2\phi)=(u^2_A-2u_Av_A \cos\theta+v^2_A\cos^2\theta)+v^2_A\sin^2\theta\\ \Rightarrow v^2_B(\cos^2\phi+\sin^2\phi)=u^2_A-2u_Av_A \cos\theta+v^2_A(\cos^2\theta+\sin^2\theta)\\ \Rightarrow v^2_B=u^2_A-2u_Av_A \cos\theta+v^2_A

where we have used the property sin2x+cos2x=1\sin^2x+cos^2x=1 .

vB=uA22uAvAcosθ+vA2\therefore v_B=\sqrt{ u^2_A-2u_Av_A \cos\theta+v^2_A} ..............(3)

Given uA=3.00×102 m/su_A=3.00\times 10^2\ m/s

vA=1.50×102 m/sv_A=1.50\times 10^2\ m/s

θ=60°\theta=60\degree

Substituting these values in equation (3), we get

vB=(3.00×102)22×3.00×102×1.50×102×cos60°+(1.50×102)2v_B=\sqrt{ (3.00\times 10^2)^2-2\times 3.00\times 10^2\times 1.50\times 10^2\times \cos60\degree+(1.50\times 10^2)^2}

vB=2.56×102 m/s\Rightarrow v_B=2.56\times 10^2\ m/s

Thus, the speed of the proton B after collision is 2.56×102 m/s2.56\times 10^2\ m/s .

Kinetic energy:

Total kinetic energy before collision = 12muA2\frac{1}{2}mu^2_A

Total kinetic energy after collision =12mvA2+12mvB2=\frac{1}{2}mv^2_A+\frac{1}{2}mv^2_B

For the collision to be elastic, the total kinetic energy before collision must be equal to the total kinetic energy after collision i.e, for elastic collision

12muA2=12mvA2+12mvB2uA2=vA2+vB2\frac{1}{2}mu^2_A=\frac{1}{2}mv^2_A+\frac{1}{2}mv^2_B\\ \Rightarrow u^2_A=v^2_A+v^2_B

If this condition holds, the collision is elastic. Otherwise, the collision is inelastic.

Let's check it now

uA2=(3.00×102)2=9.00×104u^2_A=(3.00\times 10^2)^2=9.00\times 10^4

vA2+vB2=(1.50×102)2+(2.56×102)2=8.80×104v^2_A+v^2_B=(1.50\times 10^2)^2+(2.56\times 10^2)^2=8.80\times 10^4

Thus we can see that uA2>(vA2+vB2)u^2_A>(v^2_A+v^2_B) which implies loss of energy and hence the collision is inelastic.


Answer: (i) The velocity of proton B after collision is 2.56×102 m/s2.56\times 10^2\ m/s

(ii) The collision is not elastic.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS