a) The point of closest approach is found when
"E = K + U = 0 + \\frac{k_eq_aq_{Au}}{r}"
"r_{min}= \\frac{k_e(2e)(79e)}{E}"
"r_{min}= \\frac{(8.99 \\times 10^9 N\\;m^2\/C^2)(158)(1.6 \\times 10^{-19} \\;C)^2}{(400\\;MeV)(1.6 \\times 10^{-13} \\; J\/MeV)} = 5.68 \\times 10^{-16} \\;m"
b) The maximum force exerted on the alpha particle is
"F_{max} = \\frac{k_eq_aq_{Au}}{r^2}"
"F_{max} = \\frac{(8.99 \\times 10^9 \\;N m^2\/C^2)(158)(1.6 \\times 10^{-19} \\;C)^2}{(5.68 \\times 10^{-16})^2} = 1.13 \\times 10^{5} \\;N"
away from the nucleus.
Comments
Leave a comment