Explanations & Calculations
Finding that about an axis at "\\large\\frac{h}{2}" : passes through middle of width
Then considering this elemental MI of that plate about the axis considered for the whole cylinder and integrating over the full height, answer could be obtained.
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\delta m &= \\small \\pi r^2\\delta x\\times \\rho \\,\\,\\,\\,\\,\\,\\,\\,\\,: \\rho\\text{ = volumetric mass}\\\\\n&= \\small \\pi r^2\\delta x\\times \\frac{M}{\\pi r^2h}\\\\\n&= \\small \\frac{M}{h}\\delta x\\\\\n\\\\\n\\small I &= \\small \\int_{-h\/2}^{h\/2}\\delta I\\\\\n&= \\small \\small \\int_{-h\/2}^{h\/2} \\frac{1}{4}\\Big(\\frac{M}{H}\\delta x\\Big)r^2+\\Big(\\frac{M}{h}\\delta x\\Big) x^2 \\\\\n&= \\small \\frac{Mr^2}{4h} \\int_{-h\/2}^{h\/2} \\delta x + \\frac{M}{h} \\int_{-h\/2}^{h\/2} x^2 \\delta x\\\\\n& = \\small \\frac{Mr^2}{4h} [x]_{-h\/2}^{h\/2} + \\frac{M}{h} [\\frac{x^3}{3}]_{-h\/2}^{h\/2}\\\\\n&= \\small \\frac{Mr^2}{4h} [h] + \\frac{M}{h} [\\frac{h^3}{12}]\\\\\n\\small I &= \\small \\bold{M\\Big[\\frac{r^2}{4}+\\frac{h^2}{12}\\Big]}\n\\end{aligned}"
Comments
Leave a comment