Question #139000
An angular momentum of a fly wheel having a momentum of inertia of 0.125kgm^2 decreases form 3.0kgm^2/s to 2.0kgm^2/s in a period of 1.5secs.
(i) what is the average torque acting on the fly wheel during this period.
(ii) assuming a uniform angular acceleration, through how many revolution will the fly wheel have turned?
1
Expert's answer
2020-10-19T13:25:32-0400

L=mvR=mωR2=212mR2ω=2IωL=mvR=m\omega R^2=2\cdot\frac{1}{2}m R^2\omega=2I\omega \Rightarrow ω=L2I\omega=\frac{L}{2I}

<M>=R<F>=R2(F1+F2)=R2(mω12R+mω22R)=mR22(ω12+ω22)=I(ω12+ω22)=L12+L224I<M>=R<F>=\frac{R}{2}(F_1+F_2)=\frac{R}{2}(m\omega_1^2R+m\omega_2^2R)=\frac{mR^2}{2}(\omega_1^2+\omega_2^2)=I(\omega_1^2+\omega_2^2)=\frac{L_1^2+L_2^2}{4I}

<M>=32+2240.125=26<M>=\frac{3^2+2^2}{4\cdot0.125}=26 N•m


φ=2πn=ω1+ω22t=t2I(L1+L2)\varphi=2\pi n=\frac{\omega_1+\omega_2}{2}t=\frac{t}{2I}(L_1+L_2)

n=t4πI(L1+L2)n=\frac{t}{4\pi I}(L_1+L_2)

n=1.543.140.125(3+2)4.78n=\frac{1.5}{4\cdot3.14\cdot0.125}\cdot(3+2)\approx4.78


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS