L=mvR=mωR2=2⋅12mR2ω=2IωL=mvR=m\omega R^2=2\cdot\frac{1}{2}m R^2\omega=2I\omegaL=mvR=mωR2=2⋅21mR2ω=2Iω ⇒\Rightarrow⇒ ω=L2I\omega=\frac{L}{2I}ω=2IL
<M>=R<F>=R2(F1+F2)=R2(mω12R+mω22R)=mR22(ω12+ω22)=I(ω12+ω22)=L12+L224I<M>=R<F>=\frac{R}{2}(F_1+F_2)=\frac{R}{2}(m\omega_1^2R+m\omega_2^2R)=\frac{mR^2}{2}(\omega_1^2+\omega_2^2)=I(\omega_1^2+\omega_2^2)=\frac{L_1^2+L_2^2}{4I}<M>=R<F>=2R(F1+F2)=2R(mω12R+mω22R)=2mR2(ω12+ω22)=I(ω12+ω22)=4IL12+L22
<M>=32+224⋅0.125=26<M>=\frac{3^2+2^2}{4\cdot0.125}=26<M>=4⋅0.12532+22=26 N•m
φ=2πn=ω1+ω22t=t2I(L1+L2)\varphi=2\pi n=\frac{\omega_1+\omega_2}{2}t=\frac{t}{2I}(L_1+L_2)φ=2πn=2ω1+ω2t=2It(L1+L2)
n=t4πI(L1+L2)n=\frac{t}{4\pi I}(L_1+L_2)n=4πIt(L1+L2)
n=1.54⋅3.14⋅0.125⋅(3+2)≈4.78n=\frac{1.5}{4\cdot3.14\cdot0.125}\cdot(3+2)\approx4.78n=4⋅3.14⋅0.1251.5⋅(3+2)≈4.78
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments