a) Density by the definition "\\rho=\\frac{m}{V}".
V is the volume of sphere "V=\\frac{4}{3}\\pi*R^3"
From the frequency of vibration "\\nu=\\frac{m}{M}->m=M*\\nu"
"\\rho=\\frac{3M\\nu}{4R^3\\pi}"
"\\rho=\\frac{3*4*10^{12}*63.55*10^{-3}}{4*3.14*0.128^{3}*10^{-27}}=29650*10^{36}\\frac{kg}{m^3}"
b) The drift velocity: "v=\\frac{E\\sigma}{ne}" , where "\\sigma" - electrical conduction, "\\sigma=\\frac{1}{\\rho}" , "\\rho" - resistivity E - electrical intensity, "E=\\frac{U}{l}", U - voltage, "l" - the length of conductor, n - concetration of electrons, "n=\\frac{N}{V}", N - number of electrons, V - volume, where electrons are concentrared, e - charge of electron, "e=-1.6*10^{-19}" (Cl). Substite it to our formula. Then we get:
"v=\\frac{VU}{Nle\\rho}".
The number of electrons "N=N_A*\\nu" and voltage "U=IR" bu the Ohm's law. Then,
"v=\\frac{VIR}{\\nu*N_A*\\rho*le}" .
Now, write that "C=\\frac{R}{l}" - the Nordheim’s Coefficient.
"v=\\frac{VIC}{\\nu*N_A*\\rho*e}".
By the definition "I=\\frac{e}{t}" , t - time.
"v=\\frac{VC}{\\nu*N_A*\\rho*t}" .
Let's say that "t=\\frac{1}{\\nu}" and we'll get:
"v=\\frac{VC}{N_A*\\rho}"
"V=\\frac{4}{3}\\pi*R^3"
"v=\\frac{4\\pi*R^3C}{3N_A*\\rho}"
"v=\\frac{3*3.14*(0.128)^3*10^{-27}*5500*10^{-9}}{3*6.02*10^{23}*1.7*10{-8}}=3.54*10^{-51} \\frac{m}{s}"
Comments
Leave a comment