"\\sum f_x=0 and \\sum f_y=0". For direction Y:
"F_n \\cos20\\degree-F_r\\sin 20\\degree-W=0."
"F_n (\\cos20\\degree-\\mu R\\sin 20\\degree)-W=0"
"F_n(0.9396-0.27\\times0.342)-150=0" Thus "F_n=177.02N"
For direction X:
"F_1=177.02(0.3420+0.27\\times0.9396)=105.44N".
Due to oil application on the block, the shear force on an inclined surface replaces shear force. Thus:
For direction Y:
"\\sum F_y=0". Thus, "F_n\\cos20\\degree-0.012\\times0.5\\times0.2 (\\frac{0.8}{4\\times10^{-4}}\\times sin20\\degree)-150=0" Therefore, "F_N=160.5N" .
For direction X:
"F_2-160.5\\sin20\\degree-0.012\\times0.5\\times0.2 (\\frac {0.8}{4\\times10^4}\\cos20)" .
"F_2=57.2N"
Reduction="\\frac {F_1-F_2}{F_1}=\\frac {105.5-57.2} {105}=45%"
Thus; Reduction= 45.79%
Comments
Leave a comment