solution
given data in question
radius of cylinder(r)=0.8 m
water level ("h" )=5 m
density of water ("\\rho" )=1000 Kg/m^3
figure can be shown as below
a)horizontal component of hydro static force
"F_H=PA=\\rho gh'A"
where "h'=(s+r\/2)" ; s is height from water level to hinge point A
"=1000\\times9.8\\times (4.2+0.8\/2)\\times0.8\\times 1"
"=361\\times 10^2 N"
Vertical component of hydro static force
"F_V=\\rho ghA"
"=1000\\times9.8\\times 5\\times0.8\\times 1"
"=392\\times10^2 N"
Weight of fluid block per meter length
"W=mg=\\rho gV"
(Where "V=(r^2-\\pi r^2\/4)" )
"=1000\\times 9.8\\times(0.8)^2\\times(1-\\pi\/4)\\times1"
"=13\\times10^2 N"
Net vertical force is become
"F_V'=F_V-W=392\\times10^2-13\\times10^2"
"=379\\times10^2 N"
Magnitude of hydro static force is given
"F_R=\\sqrt{(F_V')^2+(F_H)^2}"
"=\\sqrt{(361\\times10^2)^2+(379\\times10^2)^2}"
"=523\\times10^2 N"
Direction of hydro-static force is
"\\tan\\theta=\\frac{F_V'}{F_H}"
"\\theta=\\arctan{(\\frac{379\\times10^2}{361\\times10^2})}"
"\\theta=46.4^0"
hydro static force is acting at at an angle "46.4^0" with horizontal axis.
b)when the gates are about to open then normal reaction force on the cylinder is zero and cylinder will be in rotational equilibrium taking moment about point A.
"F_R\\space r\\sin\\theta-W_c\\space r=0"
"W_c=F_R\\sin\\theta"
"=523\\times10^2\\sin(46.4^0)"
"=379\\times10^2N"
therefore weight of cylinder is 37900 N.
Comments
Leave a comment