Assume that "y=ax^2+bx+c"
If "x=0" then "y=0" .We have "0=a\\cdot0+b\\cdot0+c\\to c=0".
For point (6,4): "4=a\\cdot6^2+b\\cdot6\\to a=\\frac{4-6b}{36}"
For point (10,4): "4=a\\cdot10^2+b\\cdot10\\to a=\\frac{4-10b}{100}"
So,
"\\frac{4-6b}{36}=\\frac{4-10b}{100}\\to b=1.067"
At point (0,0)
"\\frac{dy}{dx}=2ax+1.067=2a\\cdot0+1.067=\\tan(\\alpha)"
"1.067=\\tan(\\alpha)\\to \\alpha=46,85\u00b0"
Comments
Leave a comment