Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\frac{dy}{dx} &= \\small 2ax+b\\\\\n\\small \\frac{dy}{dx}_{(0,0)}&= \\small tan\\theta = 2a(0) + b \\\\\n\\small \\frac{dy}{dx}_{(0,0)} &=\\small b\n\n\\end{aligned}"
the value of b should be found.
1) Considering the coordinates of origin,
"\\qquad\\qquad\n\\begin{aligned}\n\\small 0m &= a(0^2) +b(0) + c\\\\\n\\small c &= \\small 0\n\\end{aligned}"
2) For point A,
"\\qquad\\qquad\n\\begin{aligned}\n\\small 4m &= \\small a(6^2)+b(6)\\\\\n\\small 2&= \\small 18a +3b\\\\\n\\small a &= \\small \\frac{2-3b}{18} \\cdots\\cdots(1)\n\\end{aligned}"
3) For point B,
"\\qquad\\qquad\n\\begin{aligned}\n\\small 4m &= \\small a(10^2)+b(10)\\\\\n\\small 2&= \\small 50a+5b\\\\\n\\small a &= \\small \\frac{2-5b}{50} \\cdots\\cdots(2) \n\\end{aligned}"
4) By (1) = (2) we get,
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\frac{2-3b}{18} &= \\small \\frac{2-5b}{50}\\\\\n\\small b &= \\small 1.0667\n\\end{aligned}"
5) Then,
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\theta &= \\small tan^{-1}(1.0667)\\\\\n\\small &= \\small 46.8476^0\n\\end{aligned}"
Comments
Leave a comment