Solution: the moment of inertia of a flywheel is equal to
"J=\\frac{1}{2}\\times m\\times R^2,then\\;\\epsilon=\\frac{M}{J},\\;or\\;\\epsilon=\\frac{2\\times M}{m\\times R^2};\\\\\\epsilon=\\frac{2\\times2000}{300\\times2,25}=5,926s^{-2};\\\\\\phi=\\frac{\\omega^2}{\\epsilon};\\phi=2\\times\\pi\\times N;\\omega=\\sqrt{2\\times\\pi\\times N\\times\\epsilon}=\\\\=\\sqrt{2\\times3,14\\times 4\\times5,926}=12,201s^{-1};\\\\A=E_k=\\frac{J\\times\\omega^2}{2}=\\frac{\\frac{1}{2}\\times m\\times R^2\\times\\omega^2}{2}=\\\\=\\frac{\\frac{1}{2}\\times 300\\times 2,25\\times148,861}{2}=25120,294J.\\\\Answer:\\;\\epsilon=5,926s^{-2};\\\\\\omega=12,201s^{-1};A=25120,294J"
Comments
Leave a comment