Explanations & Calculations
(1).
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\overleftarrow V_{horizontal} &= \\small \\overleftarrow{42.5}ms^{-1} + \\overleftarrow{(-25\\sin 30^0)}ms^{-1}\\\\\n&= \\small \\overleftarrow{42.5}ms^{-1} + \\overrightarrow{12.5} ms^{-1}\\\\\n&= \\small \\overleftarrow{17.5} ms^{-1}\n\\end{aligned}"
(2).
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\downarrow V_{vertical} &= \\,\\small \\downarrow 0ms^{-1} + \\downarrow {25\\cos 30^0}\\\\\n&= \\,\\small \\downarrow \\frac{25\\sqrt3}{2}ms^{-1}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small V_{h,e} &= \\small \\sqrt{V_{horizontal}^2 + V_{vertical}^2}\\\\\n&= \\small \\sqrt{17.5^2 + \\big(\\frac{25\\sqrt3}{2}\\big)^2}\\\\\n&= \\small \\bold{25.84ms^{-1}}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned} \n\\small \\text{Direction} &= \\small \\tan^{-1}\\Big(\\frac{V_{vertical}}{V_{horizontal}}\\Big)\\\\\n&= \\small \\tan^{-1}\\Big(\\frac{5\\sqrt3}{7}\\Big)\\\\\n&= \\small \\bold{51.05^0}\n\\end{aligned}"
Comments
Leave a comment