Question #123777
The angular momentum of a flywheel having a Moment of inertia 0.125kgm^3 decreases from 3.0 to 2.0kgm^2/s^2 in a period of 1.5s
(i) Assuming a uniform angular acceleration, through how many revolutions will the flywheel have tuned?
(ii) how much work is done?
1
Expert's answer
2020-06-25T09:35:28-0400

Solution.

I=0.125kgm2;I=0.125kgm^2;

L1=3.0kgm2/s;L1=3.0kgm^2/s;

L2=2.0kgm2/s;L_2=2.0kgm^2/s;

t=1.5s;t=1.5s;

i)M=ΔLΔt;M=\dfrac{\Delta L}{\Delta t};

M=1kgm2/s1.5s=0.7kgm2/s;M=\dfrac{1kgm^2/s}{1.5s}=0.7kgm^2/s;

M=Iϵ    ϵ=MI;M=I\epsilon\implies \epsilon=\dfrac{M}{I};

ϵ=0.7kgm2/s0.125kgm2=5.6rad/s2;\epsilon=\dfrac{0.7kgm^2/s}{0.125kgm^2}=5.6rad/s^2;

ϵ=ΔωΔt;\epsilon=\dfrac{\Delta\omega}{\Delta t}; Δω=ΔϕΔt;\Delta \omega=\dfrac{\Delta\phi}{\Delta t};

Δϕ=ϵ(Δt)2;\Delta\phi=\epsilon(\Delta t)^2;

Δϕ=5.6rad/s2(1.5s)2=12.6rad;\Delta\phi=5.6rad/s^2\sdot(1.5s)^2=12.6rad;

n=12.6rad2πrad=8;n=\dfrac{12.6rad}{2\pi rad}=8;


ii )A=Iω122Iw222;A=\dfrac{I\omega_1^2}{2}-\dfrac{Iw_2^2}{2};

L1=Iω1;L_1=I\omega_1;

ω1=3.0kgm2/s0.125kgm2=24rad/s;\omega_1=\dfrac{3.0kgm^2/s}{0.125kgm^2}=24rad/s;

ω2=2.0kgm2/s0.125kgm2=16rad/s;\omega_2=\dfrac{2.0kgm^2/s}{0.125kgm^2}=16rad/s;

A=0.125kgm2(24rad/s)220.125kgm2(16rad/s)22=20J;A=\dfrac{0.125kgm^2\sdot(24rad/s)^2}{2}-\dfrac{0.125kgm^2\sdot(16rad/s)^2}{2}=20J;

Answer: i)n=8;i)n=8;

ii)A=20J.ii)A=20J.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS