Solution.
"T = 95 min = 5700s;"
"R_{\\bigoplus} = 6.371\\sdot10^6m;"
"M_{\\bigoplus} = 5.97\\sdot10^{24}kg;"
"H - ?;"
The linear velocity of a satellite orbiting the Earth is sought by the formula:
"\\upsilon = \\sqrt{G\\sdot \\dfrac{M_{\\bigoplus}}{R_{\\bigoplus}+H}};"
In addition, the linear velocity of the body in a circle is sought by the following formula:
"\\upsilon = \\dfrac{2\\pi R}{T};"
For our case we have:
"\\dfrac{2\\pi( R_{\\bigoplus} +H)}{T} = \\sqrt{G\\sdot \\dfrac{M_{\\bigoplus}}{R_{\\bigoplus}+H}};"
"\\dfrac{4\\pi^2( R_{\\bigoplus} +H)^2}{T^2} = {G\\sdot \\dfrac{M_{\\bigoplus}}{R_{\\bigoplus}+H}};"
"\\dfrac{4\\pi^2( R_{\\bigoplus} +H)}{T^2} = {G\\sdot M_{\\bigoplus}};"
"R_{\\bigoplus} +H =\\dfrac{ G\\sdot M_ {\\bigoplus}T^2}{4\\pi^2};"
"H = \\dfrac{ G\\sdot M_ {\\bigoplus}T^2}{4\\pi^2} - R_{\\bigoplus};"
"H = \\dfrac{6.67\\sdot 10^{-11}\\sdot5.97\\sdot10^{24}\\sdot5700^2}{4\\sdot3.14^2} -6.371\\sdot10^6="
"=3.28\\sdot10^{20}m;"
Answer: "H = 3.28\\sdot10^{20}m."
Comments
Leave a comment