Question #112859
The Hubble Space Telescope is in a "Low-Earth Orbit" with an orbital period of 95min. Calculate the altitude of the HST's orbit above the earth's surface. Express your answer either in meters.

Earth's radius: 6.371x106 m

Earth's mass: 5.97x1024kg
1
Expert's answer
2020-04-30T10:41:23-0400

Solution.

T=95min=5700s;T = 95 min = 5700s;

R=6.371106m;R_{\bigoplus} = 6.371\sdot10^6m;

M=5.971024kg;M_{\bigoplus} = 5.97\sdot10^{24}kg;

H?;H - ?;

The linear velocity of a satellite orbiting the Earth is sought by the formula:

υ=GMR+H;\upsilon = \sqrt{G\sdot \dfrac{M_{\bigoplus}}{R_{\bigoplus}+H}};

In addition, the linear velocity of the body in a circle is sought by the following formula:

υ=2πRT;\upsilon = \dfrac{2\pi R}{T};

For our case we have:

2π(R+H)T=GMR+H;\dfrac{2\pi( R_{\bigoplus} +H)}{T} = \sqrt{G\sdot \dfrac{M_{\bigoplus}}{R_{\bigoplus}+H}};



4π2(R+H)2T2=GMR+H;\dfrac{4\pi^2( R_{\bigoplus} +H)^2}{T^2} = {G\sdot \dfrac{M_{\bigoplus}}{R_{\bigoplus}+H}};

4π2(R+H)T2=GM;\dfrac{4\pi^2( R_{\bigoplus} +H)}{T^2} = {G\sdot M_{\bigoplus}};

R+H=GMT24π2;R_{\bigoplus} +H =\dfrac{ G\sdot M_ {\bigoplus}T^2}{4\pi^2};

H=GMT24π2R;H = \dfrac{ G\sdot M_ {\bigoplus}T^2}{4\pi^2} - R_{\bigoplus};

H=6.6710115.9710245700243.1426.371106=H = \dfrac{6.67\sdot 10^{-11}\sdot5.97\sdot10^{24}\sdot5700^2}{4\sdot3.14^2} -6.371\sdot10^6=

=3.281020m;=3.28\sdot10^{20}m;

Answer: H=3.281020m.H = 3.28\sdot10^{20}m.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS