Solution.
"x = 86t;" "y = 96t-4.9t^2;"
Since the trajectory of motion is a parabola, the motion of the projectile is described by the formulas:
"x = \\upsilon_0"x"t;" "y = \\upsilon_0"y "t + a_yt^2\/2;"
a) "a_x = 0; a_y = -9.8m\/s^2;"
b) "\\upsilon_x = 86m\/s ;""\\upsilon_y = 96-9.8t;"
c) "\\upsilon_0 =\\sqrt{\\upsilon_x^2 + \\upsilon_y^2 };" "\\upsilon_0 = \\sqrt{86^2 + 96^2 } = 128.9 m\/s;"
d) "\\upsilon_x = 86 m\/s; \\upsilon_y = 96 - 9.8\\sdot 5 = 47m\/s;"
e) "h_m = -\\upsilon_0"y2 /2"\\sdot a_y;"
"h_m = -96^2\/2\\sdot(-9.8) = 470.2m;"
f) "L =\u03c5_0\n\u200b"x"t_m;" "t_m =2\\sdot(-\\upsilon"0y"\/a_y);" "t_m = 2\\sdot(-96\/-9.8) =19.6s;"
"L = 86\\sdot19.6 = 1684.9m;"
Answer: a) "a_x = 0; a_y = -9.8 m\/s^2;"
b) "\\upsilon_x = 86m\/s ;" "\\upsilon_y = 96-9.8t;"
c) "\\upsilon_0 = 128.9m\/s;"
d) "\\upsilon_x = 86 m\/s; \\upsilon_y = 47m\/s;"
e)"h_m = 470.2m;"
f)"L = 1684.9m;"
Comments
Leave a comment