As per the given question,
Mass of the block A(m)=4kg
Mass of the cylinder (M)=6kg
Radius of the cylinder (R)=20cm=0.2m
Let the tension in the string is T and the acceleration of the block is a, cylinder is rolling without slipping.
"mg-T=ma"
"4g-T=4a-----(i)"
Now, taking torque about the point of contact,
"I\\alpha = TR"
"T=\\dfrac{I\\alpha}{R}=(MR^2+\\dfrac{MR^2}{2})\\dfrac{\\alpha}{R}=\\dfrac{3MR^2\\times \\alpha}{2R}=\\dfrac{3Ma}{2}----(ii)"
From equation (i) and (ii)
"\\Rightarrow 4g+\\dfrac{3Ma}{2}=4a"
"\\Rightarrow 4a+\\dfrac{3\\times 6a}{2}=4g"
"\\Rightarrow 4a+9a=4g"
"\\Rightarrow 13a=4g"
"\\Rightarrow a=\\dfrac{4g}{13}=3.01 m\/sec^2"
Tension in the string, "T=\\dfrac{3Ma}{2}=\\dfrac{3\\times 6\\times 3.01}{2}27.09N"
ii) Speed of the cylinder after t=5 sec
"v=u+at"
"v=0+3.01\\times 5= 15.05 m\/sec"
angular velocity at t=5,
"\\omega =\\dfrac{v}{R}=\\dfrac{15.05}{0.2}=75.25 rev\/sec"
Hence kinetic energy of the cylinder ="\\dfrac{MR^2}{2}+\\dfrac{I\\omega^2}{2}=\\dfrac{6\\times 15.05^2}{2}+\\dfrac{3\\times6\\times 0.2^2\\times 75.25^2}{2}"
"=679.50 +2038.52=2718.02J"
Comments
Leave a comment