Explanation
Notations
Calculations
1.) Consider the sketch 1
a).Apply the law stated above from ground level to the height (h), the object will move.
"\\qquad\\qquad\n\\begin{aligned}\n\\small E_k +E_p&= \\small E_{k1}+E_{p1}\\\\\n\\small \\frac{1}{2}mv^2+0&=\\small 0\\,+ mgh\\\\\n\\small h&=\\small \\frac{v^2}{2g}&\\cdots\\cdots (\\small1)\\\\\n\\small &= \\small \\frac{(4ms^{-1})^2}{2\\times10}\\\\\n\\small &=\\small \\bold{0.8 m}\n\\end{aligned}"
b). As the equation 1 describes, the height which the object travels depend only on the initial velocity & the g and not on the angle of inclination, meaning that doubling the inclination angle will not make any difference in the height which it may travel.
What happens is the distance that the object travels on the incline reduces.
"\\qquad\\qquad\n\\begin{aligned}\n\\small x&=\\small \\frac{h}{\\sin(\\theta)}\\cdots\\cdots( \\small 1^{st} situation)\\\\\n\\small x_1&=\\small \\frac{h}{\\sin(2\\theta)} \\cdots\\cdots(2^{nd}situation)\\\\\n\\small \\bold {x_1}&<\\small \\bold x \n\n\\end{aligned}"
2).Consider the sketch 2
a).Apply the law stated above from top to bottom.
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\frac{1}{2}mv^2+mgh&=\\small \\frac{1}{2}mv_2^2\\,+0\\\\\n\\small v_2^2&=\\small \\sqrt{2gh\\,+v^2}\\\\\n&= \\small \\sqrt{2\\sdot10\\sdot 3m\\, +(2ms^{-1})^2}\\\\\n&= \\small \\bold{8 ms^{-1}}\n\\end{aligned}"
b).Apply the law from top to the halfway location
"\\qquad\\qquad\n\\begin{aligned}\n\\small \n\\end{aligned}" "\\begin{aligned}\n\\small \\frac{1}{2}mv^2+mgh& = \\small \\frac{1}{2}mv_1^2+mgh\\\\\n\\small \\frac{1}{2}(2)^2+10\\sdot3&=\\small \\frac{1}{2}v_1^2+10\\sdot(1.5)\\\\\n\\small \\bold{v_1}&=\\small \\bold{5.83ms^{-1}}\n\\end{aligned}"
Comments
Leave a comment