Question #108279
[img]https://upload.cc/i1/2020/04/06/gJcTdA.jpg[/img]



d8 is 4
1
Expert's answer
2020-04-09T09:28:40-0400


By the condition of the problemV0=5m/sV_0=5m/s ,a=1.5m/s2,a=1.5 m/s^2

During the fall of the ball from a height hh The car will move to a point xx

From the equationh=gt22h=\frac{g \cdot t^2}{2} Determine the time

t=2hg=220sin(600)9.81=1.879st=\sqrt{\frac{2h}{g}}=\sqrt{\frac{2 \cdot 20 \cdot \sin(60^0)}{9.81}}=1.879 s

We write the value of the coordinate xx for ball and car

x=uxtx=u_x \cdot t

x=x0+V0t+at22x=x_0+V_0 \cdot t +\frac{a \cdot t^2}{2}

we equate these equations

uxt=x0+V0t+at22u_x \cdot t=x_0+V_0 \cdot t +\frac{a \cdot t^2}{2}

a)Where will we write (initial ball speed)

ux=x0t+V0+at2u_x =\frac{x_0}{t}+V_0 +\frac{a \cdot t}{2}

ux=20cos600+101.879+5+1.51.8792=17.053m/su_x =\frac{20 \cdot \cos{60^0+10}}{1.879}+5 +\frac{1.5 \cdot 1.879}{2}=17.053m/s

Next we write

uy=gt=9.811.879=18.433m/su_y=g \cdot t=9.81 \cdot 1.879=18.433m/s

b) Ball speed before hitting a car

u=ux2+uy2=17.0532+18.4332=25.111m/su=\sqrt{u_x^2+u_y^2}=\sqrt{17.053^2+18.433^2}=25.111m/s

-the angle with the x axis is

α=arccosuxu=arccos17.05325.111=47.2260\alpha=\arccos{\frac{u_x}{u}}=\arccos{\frac{17.053}{25.111}}=47.226^0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS