Explanation
Notations
Calculations
1). Considering energy conservation, A to O.
"\\begin{aligned}\n\\small\\frac{1}{2}kx^2& =\\small f x+\\frac{1}{2} m v^2\\\\\n\\small\\frac{1}{2}k x^2& =\\small (\\mu_km g ) x+\\frac{1}{2} mv^2\\\\\n\\small 0.5\\sdot 2500\\sdot 0.2^2&=\\small(0.3\\sdot 24)\\sdot 0.2\\,+\\,0.5\\sdot 2.4\\sdot v^2\\\\\n\\small \\bold v&=\\small \\bold{6.36 \\,ms^{-2}}\n\\end{aligned}"
2). Considering the linear momentum along the moving direction,
"\\qquad\n\\begin{aligned}\n\\small mv&=\\small m_1v_1\\\\\n\\small2.4\\sdot 6.36&= \\small (2.4+0.25)\\sdot v_1\\\\\n\\small \\bold {v_1}&= \\small \\bold {5.76\\, ms^{-2}}\n\\end{aligned}"
Now, the changed frictional force,
"\\qquad\n\\begin{aligned}\n\\small f_1 &= \\small \\mu_1 m_1g\\\\\n&=\\small \\bold {7.95\\,N} \n\\end{aligned}"
Then considering the energy conservation from O to B,
"\\qquad\n\\begin{aligned}\n\\small \\frac{1}{2}m_1v_1^2&= \\small f_1d\\, + \\, \\frac{1}{2}kd^2\\\\\n\\small 43.96&= \\small 7.95d\\,+\\,1250d^2\\\\\n\\small 1250d^2\\, +\\, 7.95d-43.96&=0\\\\\n\\small \\bold d&=\\small \\bold { 0.184\\, m}\n\\end{aligned}"
3). Now (consider system at rest as in sketch no. iv) the force expelled on clay-block system by the compressed spring is,
"\\qquad\n\\begin{aligned}\n\\small F_{spring}&=\\small kd\\\\\n&= \\small \\bold {460N} \n\\end{aligned}"
Now the idea is, if the maximum static frictional force at B is greater than the spring force, the clay-block would move or the negativity.
Therefore, the frictional force,
"\\qquad\n\\begin{aligned}\n\\small f_{s.maximum}&= \\small \\mu_sm_1g\\\\\n&=\\small 0.4\\sdot (2.4\\,+\\,0.25)\\sdot 10\\\\\n&=\\small \\bold{10.6N \\,(<F_{spring})}\n\\end{aligned}"
Therefore, clay-bloc would move after compressing at B.
Comments
Leave a comment