By the condition of the problem
"V_0=5m\/s" "a=1.5 m\/s^2"
During the fall of the ball from a height "h" The car will move to a point "x"
From the equation "h=\\frac{g \\cdot t^2}{2}"
Determine the time
"t=\\sqrt{\\frac{2h}{g}}=\\sqrt{\\frac{2 \\cdot 20 \\cdot \\sin(60^0)}{9.81}}=1.879 s"
We write the value of the coordinate "x" for ball and car
"x=u_x \\cdot t"
"x=x_0+V_0 \\cdot t +\\frac{a \\cdot t^2}{2}"
we equate these equations
"u_x \\cdot t=x_0+V_0 \\cdot t +\\frac{a \\cdot t^2}{2}"
a)Where will we write (initial ball speed)
"u_x =\\frac{x_0}{t}+V_0 +\\frac{a \\cdot t}{2}"
"u_x =\\frac{20 \\cdot \\cos{60^0+10}}{1.879}+5 +\\frac{1.5 \\cdot 1.879}{2}=17.053m\/s"
Next we write
"u_y=g \\cdot t=9.81 \\cdot 1.879=18.433m\/s"
Ball speed before hitting a car
"u=\\sqrt{u_x^2+u_y^2}=\\sqrt{17.053^2+18.433^2}=25.111m\/s"
The angle with the x axis is
"\\alpha=\\arccos{\\frac{u_x}{u}}=\\arccos{\\frac{17.053}{25.111}}=47.226^0"
Comments
Leave a comment