Question #106072
A stationary ball, with a mass of 0.5 kg, is struck by an identical ball moving at
6.0ms .
1
After the collision, the second ball moves 30° to the left of its original
direction. The stationary ball moves 60° to the right of the moving ball’s original
direction. What is the velocity of each ball after the collision?
1
Expert's answer
2020-03-23T10:55:02-0400

v\overrightarrow{v} - velocity of the second ball before the collision

v=6ms|\overrightarrow{v}|=6\frac{m}{s}

v1,v2\overrightarrow{v_1},\overrightarrow{v_2} - velocities of the first and second balls after the collision accordingly



mm - the mass of each ball

According to the law of impulse conservation,

mv=mv1+mv2v=v1+v2m\overrightarrow{v}=m\overrightarrow{v_1}+m\overrightarrow{v_2}\rArr \overrightarrow{v}=\overrightarrow{v_1}+\overrightarrow{v_2}

So v\overrightarrow{v} is the summ of vectors v1\overrightarrow{v_1} and v2\overrightarrow{v_2} \rArr according to the triangle law of adding vectors, v,v1,v2\overrightarrow{v}, \overrightarrow{v_1}, \overrightarrow{v_2} form a triangle



The angle between v1\overrightarrow{v_1} and v2\overrightarrow{v_2} is equal to 30o+60o=90o30^o+60^o=90^o


So this triangle is right v1=vcos60o=6ms12=3ms\rArr |\overrightarrow{v_1}|=|\overrightarrow{v}|cos60^o=6\frac{m}{s}*\frac{1}{2}=3\frac{m}{s}


v2=vcos30o=6ms32=33ms5.2ms|\overrightarrow{v_2}|=|\overrightarrow{v}|cos30^o=6\frac{m}{s}*\frac{\sqrt{3}}{2}=3\sqrt{3}\frac{m}{s}\approx5.2\frac{m}{s}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS