Question #105463
[img]https://upload.cc/i1/2020/03/13/uVG8F5.jpg[/img]


d8 is 4
1
Expert's answer
2020-03-17T09:58:19-0400

(i)


hmax=v02sin2α2g=302sin250°29.81=35.14h_{max}=\frac{v_0^2\sin^2\alpha}{2g}=\frac{30^2\cdot\sin^250°}{2\cdot9.81}=35.14 mm


(ii)


L=l1+l2=v02sin2αg+v0cosαt=L=l_1+l_2=\frac{v_0^2\sin2\alpha}{g}+v_0\cos\alpha\cdot t=


=v02sin2αg+v0cosα2gh+v02v0g==\frac{v_0^2\sin2\alpha}{g}+v_0\cos\alpha\cdot \frac{\sqrt{2gh+v_0^2}-v_0}{g}=


=302sin100°9.81+30cos50°29.8130+(30sin50°)230sin50°9.81==\frac{30^2\sin100°}{9.81}+30\cos50°\cdot \frac{\sqrt{2\cdot 9.81\cdot 30+(30\cdot\sin50°)^2}-30\cdot\sin50°}{9.81}=


=90.35+20.48=110.83=90.35+20.48=110.83 mm


(iii)


vx=v0cos50°=30cos50°=19.28m/sv_x=v_0\cos50°=30\cdot\cos50°=19.28 m/s


vy=2gh+(v0sin50°)2=29.8130+(30sin50°)2=v_y=\sqrt{2gh+(v_0\sin50°)^2}=\sqrt{2\cdot 9.81\cdot 30+(30\cdot\sin50°)^2}=


=33.42m/s=33.42m/s


v=19.28i+33.42j\overrightarrow{v}=19.28\overrightarrow{i}+33.42\overrightarrow{j}


v=19.282+33.422=38.58m/sv=\sqrt{19.28^2+33.42^2}=38.58m/s


tanα=vxvy=19.2833.42=0.5769α30°\tan\alpha=\frac{v_x}{v_y}=\frac{19.28}{33.42}=0.5769 \to\alpha\approx30°



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS