(i)
h m a x = v 0 2 sin 2 α 2 g = 3 0 2 ⋅ sin 2 50 ° 2 ⋅ 9.81 = 35.14 h_{max}=\frac{v_0^2\sin^2\alpha}{2g}=\frac{30^2\cdot\sin^250°}{2\cdot9.81}=35.14 h ma x = 2 g v 0 2 s i n 2 α = 2 ⋅ 9.81 3 0 2 ⋅ s i n 2 50° = 35.14 m m m
(ii)
L = l 1 + l 2 = v 0 2 sin 2 α g + v 0 cos α ⋅ t = L=l_1+l_2=\frac{v_0^2\sin2\alpha}{g}+v_0\cos\alpha\cdot t= L = l 1 + l 2 = g v 0 2 s i n 2 α + v 0 cos α ⋅ t =
= v 0 2 sin 2 α g + v 0 cos α ⋅ 2 g h + v 0 2 − v 0 g = =\frac{v_0^2\sin2\alpha}{g}+v_0\cos\alpha\cdot \frac{\sqrt{2gh+v_0^2}-v_0}{g}= = g v 0 2 s i n 2 α + v 0 cos α ⋅ g 2 g h + v 0 2 − v 0 =
= 3 0 2 sin 100 ° 9.81 + 30 cos 50 ° ⋅ 2 ⋅ 9.81 ⋅ 30 + ( 30 ⋅ sin 50 ° ) 2 − 30 ⋅ sin 50 ° 9.81 = =\frac{30^2\sin100°}{9.81}+30\cos50°\cdot \frac{\sqrt{2\cdot 9.81\cdot 30+(30\cdot\sin50°)^2}-30\cdot\sin50°}{9.81}= = 9.81 3 0 2 s i n 100° + 30 cos 50° ⋅ 9.81 2 ⋅ 9.81 ⋅ 30 + ( 30 ⋅ s i n 50° ) 2 − 30 ⋅ s i n 50° =
= 90.35 + 20.48 = 110.83 =90.35+20.48=110.83 = 90.35 + 20.48 = 110.83 m m m
The car will trapp inside the pit EF safely without hitting the vertical wall GF.
(iii)
v x = v 0 cos 50 ° = 30 ⋅ cos 50 ° = 19.28 m / s v_x=v_0\cos50°=30\cdot\cos50°=19.28 m/s v x = v 0 cos 50° = 30 ⋅ cos 50° = 19.28 m / s
v y = 2 g h + ( v 0 sin 50 ° ) 2 = 2 ⋅ 9.81 ⋅ 30 + ( 30 ⋅ sin 50 ° ) 2 = v_y=\sqrt{2gh+(v_0\sin50°)^2}=\sqrt{2\cdot 9.81\cdot 30+(30\cdot\sin50°)^2}= v y = 2 g h + ( v 0 sin 50° ) 2 = 2 ⋅ 9.81 ⋅ 30 + ( 30 ⋅ sin 50° ) 2 =
= 33.42 m / s =33.42m/s = 33.42 m / s
v → = 19.28 i → + 33.42 j → \overrightarrow{v}=19.28\overrightarrow{i}+33.42\overrightarrow{j} v = 19.28 i + 33.42 j
v = 19.2 8 2 + 33.4 2 2 = 38.58 m / s v=\sqrt{19.28^2+33.42^2}=38.58m/s v = 19.2 8 2 + 33.4 2 2 = 38.58 m / s
tan α = v x v y = 19.28 33.42 = 0.5769 → α ≈ 30 ° \tan\alpha=\frac{v_x}{v_y}=\frac{19.28}{33.42}=0.5769 \to\alpha\approx30° tan α = v y v x = 33.42 19.28 = 0.5769 → α ≈ 30°
Comments